Towards Personalized Federated Learning via Heterogeneous Model Reassembly

Jiaqi Wang¹, Xingyi Yang², Suhan Cui¹, Liwei Che¹, Lingjuan Lyu³, Dongkuan Xu⁴, Fenglong Ma¹ ¹The Pennsylvania State University, ²National University of Singapore,³Sony AI, ⁴North Carolina State University {jqwang,sxc6192,lfc5481,fenglong}@psu.edu, xyang@u.nus.edu, lingjuan.lv@sony.com, dxu27@ncsu.edu

Introduction

This paper focuses on addressing the practical yet challenging problem of **model heterogeneity in federated learning**, where clients possess models with different network structures. We propose a novel framework called pFedHR, which leverages heterogeneous model reassembly to achieve personalized federated learning. We approach the problem of heterogeneous model personalization as a model-matching optimization task on the server side. Moreover, pFedHR automatically and dynamically generates informative and diverse personalized candidates with minimal human intervention. Furthermore, our proposed heterogeneous model reassembly technique mitigates the adverse impact introduced by using public data with different distributions from the client data to a certain extent. Experimental results demonstrate that pFedHR outperforms baselines on three datasets under both IID and Non-IID settings. Additionally, pFedHR effectively reduces the adverse impact of using different public data and dynamically generates diverse personalized models in an automated manner.

• Method

• **Reassembly Candidate Generation**

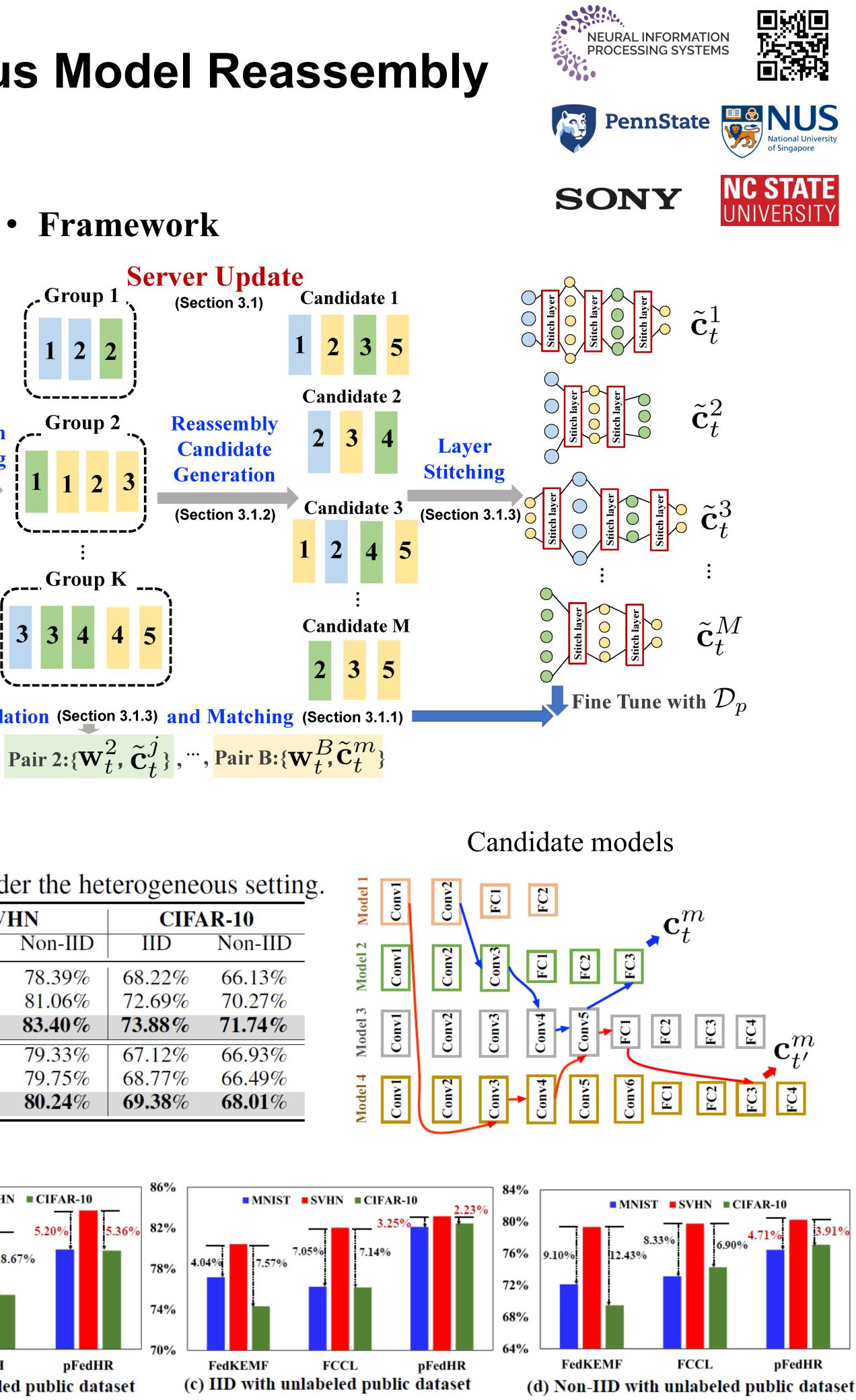
- Layer-wise Decomposition
- Function-driven Layer Grouping

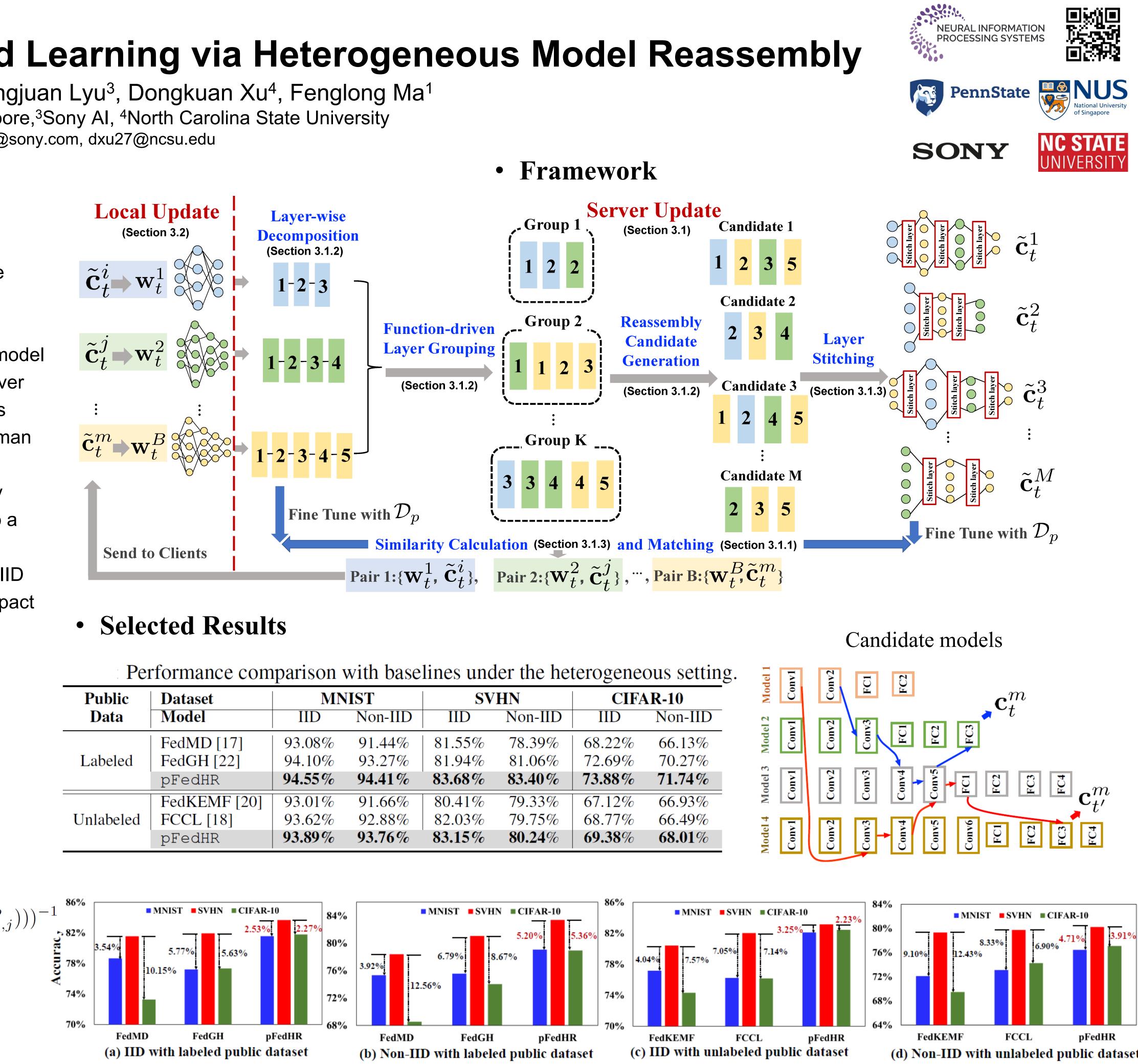
$$\min \mathcal{L}_t = \min_{\delta_{b,h}^a \in \{0,1\}} \sum_{k=1}^K \sum_{b=1}^B \sum_{h=1}^H \delta_{b,h}^k (\operatorname{dis}(\mathbf{L}_t^k, \mathbf{L}_{t,h}^b)),$$
$$\operatorname{dis}(\mathbf{L}_{t,i}^n, \mathbf{L}_{t,j}^b) = (\operatorname{CKA}(\mathbf{X}_{t,i}^n, \mathbf{X}_{t,j}^b) + \operatorname{CKA}(\mathbf{L}_{t,i}^n(\mathbf{X}_{t,i}^n), \mathbf{L}_{t,i}^b(\mathbf{X}_{t,j}^b)))$$

- **Reassembly Candidate Generation**
- Layer Stitching

• Similarity-based Model Matching

 $sim(\mathbf{w}_t^n, \mathbf{c}_t^m; \mathcal{D}_p) = sim(\mathbf{w}_t^n, \tilde{\mathbf{c}}_t^m; \mathcal{D}_p) = \frac{1}{P} \sum_{i} cos(\boldsymbol{\alpha}_t^n(\mathbf{x}_p), \boldsymbol{\alpha}_t^m(\mathbf{x}_p))$





Public	Dataset	MN	NIST	SVHN		0
Data	Model	IID	Non-IID	IID	Non-IID	IID
Labeled	FedMD [17]	93.08%	91.44%	81.55%	78.39%	68.22
	FedGH [22]	94.10%	93.27%	81.94%	81.06%	72.69
	pFedHR	94.55%	94.41%	83.68%	83.40%	73.88
Unlabeled	FedKEMF [20]	93.01%	91.66%	80.41%	79.33%	67.12
	FCCL [18]	93.62%	92.88%	82.03%	79.75%	68.77
	pFedHR	93.89%	93.76%	83.15%	80.24 %	69.38



Performance changes when using different public data. pFedHR is our proposed model.