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Abstract

Vision foundation models (FMs) like CLIP have1

exhibited exceptional capabilities in visual and lin-2

guistic understanding, particularly in zero-shot in-3

ference tasks. However, these models struggle with4

data that significantly deviates from their training5

samples, necessitating fine-tuning, which is often6

infeasible in centralized settings due to data pri-7

vacy concerns. Federated learning (FL) combined8

with parameter-efficient fine-tuning (PEFT) offers9

a potential solution, yet existing methods face is-10

sues with domain-specific characteristics and out-11

of-domain generalization. We propose Federated12

Adapter Generalization (FedAG), a novel federated13

fine-tuning approach that leverages multiple fine-14

grained adapters to capture domain-specific knowl-15

edge while enhancing out-of-domain generaliza-16

tion. Our method uses quality-aware in-domain17

mutual learning and attention-regularized cross-18

domain learning to integrate domain-specific in-19

sights effectively. Experiments on the CLIP model20

with three domain-shifting datasets, ImageCLEF-21

DA, Office-Home, and DomainNet, demonstrate22

the superior performance of FedAG in both in-23

domain and out-of-domain scenarios.24

1 Introduction25

Vision foundation models (FMs), such as pretrained26

CLIP [Radford et al., 2021] and its variants [Li et al., 2023],27

have demonstrated superior capabilities in understanding vi-28

sual concepts and their linguistic descriptions. They have29

been employed in a wide range of vision tasks, including im-30

age classification, especially for zero-shot inference, thanks31

to their large number of parameters and the extensive train-32

ing data they leverage. However, these models still face chal-33

lenges when confronted with input data significantly different34

from their training samples. Therefore, fine-tuning becomes35

essential. Traditional fine-tuning strategies are typically con-36

ducted in a centralized manner. However, this approach is37

often impractical, particularly for sensitive data like medi-38

cal information, which is often distributed among different39

clients and cannot be shared. This distributed scenario signif-40

icantly complicates the fine-tuning process for vision founda- 41

tion models. 42

Recent studies have focused on addressing this challenge 43

by combining federated learning (FL) with fine-tuning of 44

vision foundation models, a technique known as federated 45

fine-tuning. Existing approaches [Xiao et al., 2023; Marchi- 46

sio et al., 2023; Chua et al., 2023; Khalid et al., 2023] typi- 47

cally aim to fine-tune these models without utilizing the entire 48

model, often employing layer-drop techniques [Sajjad et al., 49

2023] to compress a full model into a sub-model. The sub- 50

model and an emulator are distributed to clients. Clients then 51

update this compressed sub-model with their private data with 52

the help of the emulator iteratively. The resulting sub-model 53

is eventually incorporated back into the full model to com- 54

plete the fine-tuning process. However, these compression 55

techniques fail to maintain alignment between the fine-tuned 56

compressed layers and the remaining layers, leading to per- 57

formance degradation in the fine-tuned models. 58

Federated parameter-efficient fine-tuning (PEFT) tech- 59

niques, such as FedCLIP [Lu et al., 2023] and FedPETun- 60

ing [Zhang et al., 2023], have emerged to address the afore- 61

mentioned problem. These approaches involve deploying the 62

foundation model with an additional adapter on each client, 63

which is then collaboratively trained like FedAvg [McMa- 64

han et al., 2017]. The aggregated adapter is subsequently 65

integrated into the foundation model to achieve fine-tuning. 66

Despite their straightforward and effective nature, federated 67

PEFT models still have several issues: 68

Indistinguishable in domain-specific charateristics. In 69

real-world applications, the data collected by clients may ex- 70

hibit different characteristics even for the same task. For in- 71

stance, the stylistic realism of an image can vary across dif- 72

ferent forms of visual art, such as painting, photography, and 73

digital art, leading to unique artistic expressions. However, 74

existing models typically employ a single adapter to capture 75

knowledge from mixed domains, resulting in a performance 76

gap compared to domain-specific adapters. Figure 1 (a) il- 77

lustrates the performance comparison between using a sin- 78

gle adapter for fine-tuning and employing separate adapters 79

for each domain on the CLIP model in a centralized manner, 80

using the DomainNet dataset with three domains: “clipart”, 81

“painting”, and “real”. It can be observed that despite using 82

data from all three domains to fine-tune the adapter, CLIPone 83

still performs worse than CLIPmulti, which fine-tunes each 84
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Figure 1: In-domain and out-of-domain preliminary results.

adapter using only domain-specific data. This issue is ex-85

pected to exacerbate in the federated fine-tuning setting due to86

the heterogeneity of clients, leading to an aggregated adapter87

inferior to centralized fine-tuning. These initial findings mo-88

tivate us to develop domain-specific adapters for use in feder-89

ated PEFT.90

Incapable to out-of-domain generalization. While ex-91

isting federated fine-tuning approaches can improve per-92

formance compared to zero-shot inference on the original93

models, they still struggle when faced with new or out-of-94

domain data. To illustrate, consider the centralized fine-95

tuning on the DomainNet dataset, where we evaluate the orig-96

inal CLIP model (referred to as CLIPzero) and the fine-tuned97

CLIPone on three new domains: “infograph”, “quickdraw”,98

and “sketch”. Figure 1 (b) presents the results, with the99

performance of CLIPmulti representing the upper bound. It100

can be observed that, while fine-tuning with a shared adapter101

(CLIPone) does improve performance compared to CLIPzero,102

the degree of improvement is limited, as the results are far103

from the performance achieved by CLIPmulti. Therefore, it is104

crucial to enhance the adapters’ capability for out-of-domain105

generalization, especially in the federated fine-tuning setting.106

However, addressing the aforementioned issue is challeng-107

ing. On the one hand, it is hard to directly extend existing108

work to model domain-specific characteristics. Sub-model109

fine-tuning approaches encounter difficulties in compressing110

multiple domain-specific sub-models and aggregating them.111

Similarly, PEFT approaches face challenges in aggregating112

adapters with diverse knowledge. On the other hand, equip-113

ping the capability of out-of-domain generalization with fed-114

erated fine-tuning is an open challenge in this domain and is115

still underexplored by existing studies. Thus, it is urgent to116

develop a new method to tackle these challenges simultane-117

ously.118

In this paper, we propose a novel federated fine-tuning ap-119

proach named Federated Adapter Generalization (FedAG).120

This approach employs multiple fine-grained adapters, allow-121

ing the injection of domain-specific knowledge into corre-122

sponding adapters while enhancing the capability of out-of-123

domain knowledge generalization by jointly combining these124

adapters. Unlike existing work, which either compresses a125

sub-model for each client or deploys a foundation model, we126

enable clients to have their domain-specific models represent-127

ing the characteristics of their data. These client models are128

trained with private data and uploaded to the server to inject 129

their domain-specific knowledge into the foundation model. 130

Specifically, each domain-specific client Cn with model 131

parameters Wt
n has a corresponding adapter At

n at each com- 132

munication round t. Domain-specific knowledge is aggre- 133

gated into the adapter through a quality-aware in-domain 134

mutual learning module, aided by a set of domain-specific 135

synthetic data generated by Stable Diffusion [Rombach et al., 136

2022]. To equip FedAG with the ability for out-of-domain 137

generalization, we develop a novel attention-regularized 138

cross-domain learning module, which attentively aggregates 139

all domain-specific adapters with a novel regularizer control- 140

ling the domain weights. The updated client models are then 141

distributed to the corresponding domains again for learning 142

in the next communication round. 143

We conduct experiments in the cross-silo federated fine- 144

tuning setting on the CLIP vision foundation model with three 145

domain-shifting datasets: ImageCLEF-DA, Office-Home, 146

and DomainNet. Experimental results demonstrate the effec- 147

tiveness of FedAG on both in-domain and out-of-domain val- 148

idations, performing close to or slightly better than the cen- 149

tralized fine-tuning baselines. Ablation studies and model in- 150

sight analysis validate the reasonableness of our model de- 151

sign. 152

2 Related Work 153

2.1 Foundation Model in Federated Learning 154

Foundation models (FMs) [Bommasani et al., 2021] have 155

demonstrated strong capabilities across various domains, 156

such as computer vision. However, the effectiveness of FMs 157

is heavily dependent on large amounts of publicly available 158

training data and the extensive size of model parameters. In 159

real-world applications, this dependency raises several prac- 160

tical challenges: (1) suboptimal performance in specific do- 161

mains due to limited access to relevant data, often restricted 162

by privacy concerns; (2) the substantial size of the mod- 163

els necessitates significant computational resources, thereby 164

limiting their applicability in various scenarios. Federated 165

learning (FL)[McMahan et al., 2017] presents a collabora- 166

tive machine learning framework wherein clients can jointly 167

train models without sharing their data, utilizing distributed 168

computational resources. Several research efforts have ex- 169

plored the integration of FMs within FL [Chen et al., 2024; 170

Guo et al., 2023; Lu et al., 2023; Su et al., 2024]. Addition- 171

ally, multiple surveys[Zhuang et al., 2023; Ren et al., 2024; 172

Woisetschläger et al., 2024] have reviewed the advancements, 173

open challenges, and future directions in this field. 174

2.2 Federated Fine-tuning of Foundation Models 175

To achieve better performance in specific domains, fine- 176

tuning FMs with domain-specific data is essential. FL facil- 177

itates this fine-tuning process by allowing the use of locally 178

stored data through distributed computational resources. Ex- 179

isting related research can be categorized into full FMFL tun- 180

ing [Deng et al., 2023; Fan et al., 2023], partial FMFL tun- 181

ing [Peng et al., 2024; Marchisio et al., 2022; Khalid et al., 182

2023], and parameter-efficient FMFL fine-tuning [Lu et al., 183

2023; Zhang et al., 2023; Chua et al., 2023]. Our work falls 184
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Figure 2: Overview of the proposed FedAG framework.

into the parameter-efficient fine-tuning (PEFT) in FMFL. The185

aforementioned studies typically require clients to possess186

FMs, with the aim of mutual benefit. In contrast, our ap-187

proach places the FM on the server side, representing a more188

practical setting. Moreover, our objective is to enable clients189

to collaboratively contribute to the FM model learning with190

their specific domain knowledge without accessing local data.191

3 Methodology192

3.1 Model Input193

The proposed model FedAG aims to iteratively inject domain194

knowledge into the vision foundation model CLIP deployed195

on the server through collaboration with N mutually exclu-196

sive and independent domain-specific clients {C1, · · · , CN}197

without sharing their private data {D1, · · · ,DN}.198

To facilitate knowledge transfer while safeguarding199

clients’ data privacy, the conventional approach involves200

data-free knowledge transfer, where often random Gaus-201

sian noise is utilized to distill knowledge from one model202

to another [Chen et al., 2019]. Despite recent advance-203

ments [Raikwar and Mishra, 2022], noise-based knowledge204

transfer still encounters performance degradation compared205

to using real data. To conduct effective knowledge trans-206

fer, we leverage the open-source text-to-image model, Stable207

Diffusion 2.0 [Rombach et al., 2022], to generate domain-208

specific data Sn for each client Cn. The details of synthetic209

data generation can be found in §Sec. 4.1.210

In practice, clients will share the style information (text211

prompt or the generated textual inversion token) so that212

domain-specific synthetic data {S1, · · · ,SN} can be gener-213

ated on the server. Once synthetic data is generated, they214

will be transferred to the corresponding clients to perform the215

quality estimation. The communication of the synthetic data216

is only a one-time cost and is often negligible.217

3.2 Model Overview218

The proposed FedAG model comprises two main updates:219

the client update and the server update. The client update220

module (§Sec. 3.3) is designed to train a local model fn for221

each client Cn using their respective data Dn, where the pa-222

rameters of fn (i.e., Wt
n at the t-th communication round)223

encapsulate the domain-specific knowledge. Additionally, it224

estimates a data-quality score αi,t
n ∈ αt

n for each synthetic225

data instance sin ∈ Sn. The client model parameters Wt
n 226

and the estimated quality scores αt
n are then uploaded to the 227

central server for further processing. 228

During the server update (§Sec. 3.4) at the t-th com- 229

munication round, FedAG first learn the logits of synthetic 230

data using the CLIP framework. It then integrates the do- 231

main knowledge from Wt
n into the corresponding domain- 232

specific attention-based adapter At
n based on the learned log- 233

its through a quality-aware in-domain mutual learning mod- 234

ule. Furthermore, it extends the model’s capability to out- 235

of-domain knowledge using an attention-regularized cross- 236

domain learning module. Afterward, the updated client mod- 237

els (denoted as {Ŵt
1, · · · ,Ŵt

N}) are redistributed to their 238

respective clients for another round of the client update. The 239

updates continue iteratively until FedAG achieves conver- 240

gence. 241

3.3 Client Update 242

Client Model Training At the t-th communication round, 243

client Cn will receive an updated model Ŵt−1
n from the 244

server, which is trained using the synthetic data Sn in the 245

server update. Since the generated synthetic data Sn are dif- 246

ferent from the real domain data Dn, directly using Ŵt−1
n as 247

the initialized client model at the t-the communication round 248

(i.e., Wt
n = Ŵt−1

n ) will be unsuitable. 249

Figure 3 displays the empirical experiment results of mod- 250

els trained with real and synthetic data on the Domain- 251

Net dataset in a centralized manner, where the model is 252

TinyViT [Wu et al., 2022]. It is evident from Figure 3 that 253

models trained with real data outperform those trained with 254

synthetic data by a significant margin. Therefore, replac- 255

ing the well-trained client model Wt−1
n with the distributed 256

Ŵt−1
n arbitrarily would disrupt the clients’ training. To mit- 257

igate this issue, we propose the use of momentum update for 258

the client model as follows: 259

Wt
n = γWt−1

n + (1− γ)Ŵt−1
n , (1)

where γ is the hyperparameter. We then use the traditional 260

cross-entropy (CE) loss to train the client model’s parameters 261

Wt
n for the n-th client using Dn as follows: 262

min
Wt

n

Lt
n :=

1

|Dn|
∑

(xi
n,y

i
n)∈Dn

CE(fn(xi
n;W

t
n),y

i
n), (2)
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Figure 3: Performance comparison with synthetic and real data.

where fn is a TinyViT model [Wu et al., 2022], |Dn| is the to-263

tal number of private training data, xi
n is the i-th data feature,264

yi
n ∈ {0, 1}|Y| is the corresponding label, and Y is the set of265

distinct labels, which is shared by all domains. The trained266

model Wt
n via Eq. (2) contains the knowledge of the m-th267

domain.268

Quality Estimation for Domain-specific Synthetic Data269

The synthetic dataset Sn, generated through stable diffusion,270

is essential for the server update but presents an unknown271

quality challenge. To address this, we propose estimating272

data quality using a prototype-based similarity measurement273

for each domain-specific set of generated data Sn, utilizing274

the trained local model Wt
n.275

Label-aware Prototype Representation Learning. Let Dy
n de-276

note the subset of training data with labels y ∈ Yn. For each277

data instance xi
n within Dy

n, we first derive its feature repre-278

sentation ri,tn using the layers of Wt
n before the prediction279

layer. We then compute a prototype representation py,t
n for280

each label category y by averaging the representations of all281

data in Dy
n, specifically, py,t

n = 1
|Dy

n|
∑

xi
n∈Dy

n
ri,tn .282

Similarity-based Data Quality Estimation For the generated283

data subset Sy
n labeled y in the n-th domain, each instance284

sin ∈ Sy
n also receives a feature representation qi,t

n through285

Wt
n. We then calculate the cosine similarity αi,t

n between286

qi,t
n and the corresponding prototype py,t

n , represented as287

αi,t
n = cos(qi,t

n ,py,t
n ). The vector of these similarity scores,288

αt
n, for all generated data in Sn on the n-th client, is compiled289

and prepared for upload to the server alongside Wt
n.290

This methodology offers significant advantages: it ensures291

that uploading synthetic data quality scores does not com-292

promise the confidentiality of client data, and it allows each293

client model to provide specific data-quality scores, thus en-294

hancing the precision of the mutual learning process.295

3.4 Server Update296

Upon receiving the uploaded client models {Wt
1, · · · ,Wt

N}297

and their corresponding estimated data-quality scores298

{αt
1, · · · ,αt

N}, the server integrates domain-specific knowl-299

edge into the basic foundation model. This is achieved300

by incorporating domain-specific attention-based adapters301

{At
1, · · · ,At

N}, each consisting of an identical multi-layer302

block positioned after the feature extractor of the vision foun-303

dation model CLIP.304

CLIP-based Logit Learning The goal of FedAG is to in-305

ject domain knowledge included in client model parame-306

ters into the CLIP model in a parameter-efficient fine-tuning307

way. Let Encimg() represent the forzon image encoder and308

Enctxt() be the forzon text encoder of CLIP. Let Ly denote 309

the description of class label y, i.e., “a photo of a [class]”. 310

To learn the logit for an image sin ∈ Sn, we follow the CLIP 311

pre-training framework and take the image sin and all the la- 312

bel descriptions {Ly}|Y|
y=1 as the input. In particular, we first 313

obtain the representations of sin and Ly using the correspond- 314

ing encoders as follows: 315

Iin = Encimg(s
i
n),Ty = Enctxt(Ly). (3)

Following FedCLIP [Lu et al., 2023], the image represen- 316

tation Iin ∈ Rd will pass an attention-based adapter An to 317

obtain a fine-tuned domain-specific representation as follows: 318

Ĩi,tn = At
n(I

i
n)⊙Iin = Softmax(MLP1,t

n (Tanh(MLP2,t
n (Iin))))⊙Iin.

(4)
where Ĩi,tn ∈ Rd, d is the dimension size, and ⊙ denotes the 319

element-wise dot product. MLP is the multi-layer perception. 320

Finally, we can obtain the domain-specific logit for the in- 321

put image as follows: 322

ϕi,t
n = [Ĩi,tn ·T⊤

1 , · · · , Ĩi,tn ·T⊤
|Y|]. (5)

Quality-aware In-domain Mutual Learning To transfer 323

domain-specific knowledge from the client model Wt
n to the 324

CLIP model (i.e., the corresponding adapter At
n), an intu- 325

itive way is to conduct knowledge distillation [Hinton et al., 326

2015] by treating Wt
n as the teacher network and the adapter- 327

based CLIP as the student network. However, this simple 328

strategy presents several limitations: it overlooks the quality 329

of domain-specific synthetic data Sn involved in the distilla- 330

tion process and only allows unidirectional knowledge trans- 331

fer, which does not update the local model Wt
n, thus under- 332

utilizing the potential of the federated learning framework. 333

To overcome these shortcomings, we introduce a quality- 334

aware in-domain mutual learning strategy. This approach not 335

only ensures effective integration of domain-specific knowl- 336

edge into At
n but also facilitates dynamic updates of the lo- 337

cal model, leveraging the quality assessments of the synthetic 338

data to enhance the overall learning process. Note that we use 339

Ŵt
n to distinguish the updates of the client model Wt

n on the 340

server. The loss function is defined as follows: 341

min
At

n,Ŵ
t
n

J t
n :=

1

2
∑|Sn|

j=1 α
j,t
n

∑
sin∈Sn

αk,t
n

{
KL(θi,t

n ||φi,t
n )

+ KL(φi,t
n ||θi,t

n )
}
,

(6)

where 342

θi,t
n = fn(s

i
n;Ŵ

t
n),φ

i,t
n = softmax(ϕi,t

n )), (7)

θi,t
n is the predicted probabilities by the client model Ŵt

n on 343

each data instance sin on the server, and φi,t
n is probabilities 344

ouputed by the CLIP model using Eq. (5). KL(·||·) is the 345

Kullback–Leibler divergence. 346

Attention-regularized Cross-domain Learning Using 347

Eq. (6), we can update the adapters and client models 348

simultaneously. However, such a design may only work for 349

data belonging to existing domains, i.e., there is a lack of 350



generalization ability for out-of-domain data. We propose a351

novel attention-regularized cross-domain learning strategy to352

equip the proposed FedAG with the capability for dealing353

with out-of-domain data.354

In particular, for a synthetic data instance sin ∈ Sn,355

we not only generate its logit ϕi,t
n via Eq. (5) with the356

domain-specifc adaptor At
n but also from other adaptors357

{At
1, · · · ,At

n−1,A
t
n+1, · · · ,At

N}. We calculate the atten-358

tion score βi,t
k ∈ R (k ∈ [1, N ]) for each adaptor using a359

softmax function on top of an MLP layer and then obtained360

the aggregated logit for each data as follows:361

ηi,t
n =

N∑
k=1

βi,t
k ϕi,t

k ,

[βi,t
1 , · · · , βi,t

N ] = softmax([MLP(ϕi,t
1 ), · · · ,MLP(ϕi,t

N )]).

(8)

The domain index n is known for each training data during362

the training. Thus, the attention weight βi,t
n should be larger363

than those obtained from the other adapters. We use this in-364

tuition as prior knowledge to guide the model learning via an365

attention-based regularize as follows:366

Ri,t
n = max(0, δ+max([βi,t

1 , · · · , βi,t
n−1, β

i,t
n+1, · · · , β

i,t
N ])−βi,t

n )),
(9)

where δ is the margin hyperparameter.367

Server Optimization Based on Eqs. (6), (7), (8), and (9),368

we obtain the final loss function for the server update as fol-369

lows:370

min
At,Wt

Gt :=
1

N

N∑
n=1

[
J t
n +

∑
(sin,y

i
n)∈Sn

[
CE(φi,t

n ,yi
n)︸ ︷︷ ︸

In-domain Prediction

+ CE(κi,t
n ,yi

n)︸ ︷︷ ︸
Cross-domain Prediction

+λRi,t
n

]]
,

(10)

where At = {At
1, · · · ,At

N}, Wt = {Ŵt
1, · · · ,Ŵt

N},371

κi,t
n = softmax(ηi,t

n ), and λ is the hyperparameter. The up-372

dated client models Wt = {Ŵt
1, · · · ,Ŵt

N} will be redis-373

tributed to the corresponding domain-specific clients for the374

next communication round update.375

3.5 Inference376

FedAG will be trained iteratively using Eqs. (2) and (10) un-377

til converge. We then conduct the inference on the testing378

data. For the in-domain scenario, where the domain index n379

is known, we use the label index with the maximum value in380

ϕi
n as the predicted label, i.e., ŷin = argmax{1,··· ,|Y|}(ϕ

i
n)381

via Eq. (5). For the out-of-domain testing where the domain382

is unknown, we use the label index with the maximum value383

in ηi as the predicted label, i.e., ŷi = argmax{1,··· ,|Y|}(η
i)384

via Eq. (8).385

4 Experimental Setups386

4.1 Datasets387

Real Data To fairly validate the proposed model FedAG388

in our experiments, we focus on the image classification task389

on three commonly domain-shifting datasets. (1) Domain- 390

Net1. It totally has 569,010 images from 6 domains, in- 391

cluding clipart, infographics, painting, quickdraw, real, and 392

sketch. Each domain contains 48K to 172K images, cate- 393

gorized into 345 classes. (2) Office-Home dataset2. It has 394

15,500 images from 4 different dimensions: artistic images, 395

clip art, product images, and real-world images. Each domain 396

has 65 object classes. (3) ImageCLEF-DA3. It is a bench- 397

mark for the ImageCLEF 2014 domain adaption challenge, 398

including Caltech-256, ImageNet ILSVRC 2012, and Pascal 399

VOC 2012. There are 12 categories and 50 images in each 400

domain. 401

Since we are addressing both “in-domain” and “out-of- 402

domain” scenarios, we partition the domains in each dataset 403

into training and testing domains. The data in the testing 404

domains are exclusively used for evaluating out-of-domain 405

performance. For the training domains, we distribute each 406

domain’s data to each client. Specifically, we randomly se- 407

lect 90% of the data for client model training, reserving the 408

remaining 10% for in-domain validation. 409

Synthetic Data When training the proposed FedAG, we 410

also incorporate domain-level synthetic data generated by 411

Stable Diffusion V24. The number of synthetic data for each 412

training domain equals 10% of the real domain data. For the 413

style-distinctive datasets, DomainNet and OfficeHome, syn- 414

thetic data can be readily generated using text prompts fol- 415

lowing the template “a photograph/drawing of $class in $style 416

style”. However, for ImageCLEF-DA, where the style in- 417

formation is implicit and challenging to articulate using text 418

prompts, we resort to generating synthetic data using textual 419

inversion [Gal et al., 2022]. Textual inversion entails deriv- 420

ing an appropriate text token corresponding to the implicit 421

style. We sampled 10 instances from each of the 12 classes 422

within the real ImageCLEF dataset and employed the Dif- 423

fuser library to perform textual inversion. Once the style 424

token is derived, the server utilizes a similar template, “a 425

$class in $style token style”, to generate synthetic images for 426

ImageCLEF-DA. 427

4.2 Baselines 428

We compare the proposed FedAG with several baselines in 429

different settings, including zero-shot inference, centralized 430

training, and federated learning. 431

Zero-Shot Inference We directly use the original CLIP 432

model to predict the labels for given images in the test- 433

ing data. This zero-shot inference baseline is denoted as 434

CLIPzero. 435

Centralized Learning Since FedAG uses private domain 436

data {D1, · · · ,DN} for client training and synthetic data 437

{S1, · · · ,SN} for server training, for a fair comparison, we 438

also use them together for the centralized training baselines. 439

This setting involves two kinds of centralized training: clas- 440

sical centralized training and fine-tuning on CLIP. 441

1https://ai.bu.edu/M3SDA/
2https://www.hemanthdv.org/officeHomeDataset.html
3https://www.imageclef.org/2014
4https://huggingface.co/stabilityai/stable-diffusion-2

https://ai.bu.edu/M3SDA/
https://www.hemanthdv.org/officeHomeDataset.html
https://www.imageclef.org/2014
https://huggingface.co/stabilityai/stable-diffusion-2


Table 1: In-domain evaluation results. “Centra.” means the centralized learning, “FLFM” means federated learning with foundation models.

Setting Method ImageCLEF-DA Office-Home DomainNet
Caltech ImageNet Art Product Real Clipart Painting Real

Zero-shot CLIPzero 97.25 96.87 78.12 85.14 86.33 62.67 59.77 78.07

C
en

tr
a. Classical TinyViTcen 85.41 82.06 62.81 83.97 76.32 53.44 58.32 77.01

PEFT CLIPLoRA 98.49 95.45 85.01 87.92 88.44 68.15 65.66 83.28
CLIPadapter 98.11 95.52 84.17 88.02 88.26 68.50 65.13 82.79

Fe
de

ra
te

d Classical

FedAvg 95.11 83.33 75.62 86.85 82.07 51.66 53.02 69.34
FedAvgft 90.06 80.25 61.33 75.51 74.68 48.27 43.87 62.06
FedProx 95.75 84.16 76.98 87.26 83.15 50.40 53.45 69.87
FedProxft 91.30 80.54 62.47 75.65 74.98 48.89 44.92 63.77

FLFM
FedClip 97.34 97.89 82.14 84.33 87.62 67.96 65.78 82.93
FedOT 97.26 97.91 82.56 85.47 86.61 67.68 65.85 83.20
FedAG 98.62 98.56 84.97 88.69 88.79 70.36 66.29 84.92

For the classical training, we directly train TinyViT with442

all data, denoted as TinyViTcen. We also choose two com-443

monly used parameter-efficient fine-tuning methods, adapter444

fine-tuning and LoRA [Hu et al., 2021] as baselines, which445

are denoted as CLIPadapter and CLIPLoRA. CLIPadapter will446

learn a shared adapter, but the number of parameters in the447

adaptor is the same as that of FedAG, although FedAG is448

equipped with several domain-specific adapters. We set the449

rank for CLIPLoRA as 32.450

Federated Learning We use two classical federated learn-451

ing approaches, FedAvg [McMahan et al., 2017] and Fed-452

Prox [Li et al., 2020], as baselines. These approaches are453

trained only with client data without interacting with CLIP.454

Since our model FedAG uses synthetic data for fine-tuning455

the client models, in the experiments, we also fine-tuned Fe-456

dAvg and FedProx on the server. The fine-tuned models are457

denoted as FedAvgft and FedProxft.458

The most relevant baselines are FedCLIP [Lu et al., 2023]459

and FedOT [Xiao et al., 2023]. FedCLIP deploys a CLIP460

model for each client and fine-tunes the adapter on the local461

side. The adapters are uploaded to the server for aggregation,462

similar to FedAvg. FedOT [Xiao et al., 2023] is a federated463

version of Offsite-Tuning, where the CLIP model generates464

a compressed model and an emulator, which are shared with465

clients for their training.466

4.3 Implementation Details467

For each dataset, we assign each in-domain data to one client.468

We utilize ViT Tiny patch16 2245 for the client model and469

ViT B 326 for the image encoder for the server side. Our ex-470

perimental setup involves 10 communication rounds. For the471

local update, we set the local trainin epoch as 10, the local472

learning rate as 0.0001, the batch size is 32, and the opti-473

mizer used in the optimization is Adam. For the server up-474

date, we set λ = 0.1, γ = 0.1, and δ = 0.001, the epoch of475

quality-aware in-domain mutual learning as 3, and the epoch476

of adapter initilization as 5. All experiments are conducted477

on an NVIDIA A6000 with CUDA version 12.0, running on478

a Ubuntu 20.04.6 LTS server. All baselines and the proposed479

FedAG are implemented using PyTorch 2.0.1.480

5https://huggingface.co/WinKawaks/vit-tiny-patch16-224
6https://huggingface.co/openai/clip-vit-base-patch32

5 Results 481

5.1 In-domain Evaluation 482

Table 1 presents the results of the in-domain evaluation, 483

where we train the models using the domains shown in the 484

table and conduct the testing with the head-out domain data. 485

We can observe that the proposed FedAG performs best on 486

all domains in all datasets. CLIPzero is a zero-shot learn- 487

ing model with CLIP, which does not use any training data. 488

We can observe that it performs better than the classical cen- 489

tralized learning approach TinyViTcen and federated learning 490

models FedAvg, FedAvgft, FedProx, and FedProxft. These 491

comparisons prove the predictive power of foundation models 492

for downstream tasks. 493

The centralized PEFT approaches CLIPLoRA and 494

CLIPadapter achieve comparable performance but outper- 495

form the zero-shot model CLIPzero, which confirms the 496

necessity of fine-tuning foundation models for boosting per- 497

formance. Although they are trained in a centralized manner 498

and perform the best among all baselines, their performance 499

is worse than that of FedAG. The reason is that these two 500

approaches only use one adapter or two low-rank matrices 501

to store mixed domain knowledge. However, our model 502

uses domain-specific adapters to capture the characteristics 503

of domains, thus leading to the best performance in the 504

in-domain evaluation. These results also validate the design 505

of multiple domain adapters. 506

For the classical federated learning approaches, we can ob- 507

serve that using synthetic data to fine-tune the aggregated 508

model on the server hurts the model training. These results 509

also confirm the necessity of employing the momentum up- 510

date in FedAG (i.e., Eq. (1)) for the client model before train- 511

ing again. When comparing with the federated fine-tuning ap- 512

proaches, we can find they also perform better than CLIPzero 513

but have performance gaps with centralized PEFT approaches 514

CLIPLoRA and CLIPadapter. These results demonstrate the 515

efficacy of injecting domain knowledge into foundation mod- 516

els in a federated way. 517

5.2 Out-of-domain Evaluation 518

In the previous section, our main focus was on in-domain 519

evaluation. However, the ultimate goal of training a foun- 520

dation model is to make it applicable to various downstream 521

https://huggingface.co/WinKawaks/vit-tiny-patch16-224
https://huggingface.co/openai/clip-vit-base-patch32


Table 2: Out-of-domain results. “Centra.” means the centralized learning, “FLFM” means federated learning with foundation models.

Setting Method ImageCLEF-DA Office-Home DomainNet
Pascal Clipart Infograph Quickdraw Sketch

Zero-shot CLIPzero 82.13 61.07 39.34 13.06 58.11
C

en
tr

a. Classical TinyViTcen 71.66 42.66 20.15 10.67 40.75

PEFT CLIPLoRA 81.22 67.15 42.10 14.38 59.48
CLIPadapter 81.08 67.31 42.22 13.85 59.01

Fe
de

ra
te

d Classical

FedAvg 78.33 43.58 26.75 10.78 40.56
FedAvgsyn 73.02 41.12 24.27 10.33 37.91
FedProx 78.69 45.88 27.50 12.04 40.97
FedProxsyn 72.68 40.75 24.63 11.89 38.54

FLFM
FedClip 82.45 64.44 41.65 12.89 59.23
FedOT 82.10 65.27 40.70 15.51 60.30
FedAG 83.78 68.15 45.56 21.04 63.29

Table 3: Ablation study results on the DomainNet dataset.

Method In-domain Cross-domain
Clipart Painting Real Infograph Quickdraw Sketch

FedAGmome 68.54 65.60 83.00 44.38 20.14 62.85
FedAGquality 68.12 65.13 83.11 44.79 20.58 63.15
FedAGcross 70.04 66.11 84.13 40.63 15.70 59.04
FedAGreg 68.26 64.05 81.08 42.01 17.55 61.69
FedAG 70.36 66.29 84.92 45.56 21.04 63.29

tasks, including inference on unseen data. To assess this ca-522

pability, we conduct an out-of-domain evaluation using the523

trained models used in Table 1 to validate the unseen do-524

mains, the results of which are presented in Table 2.525

For the out-of-domain evaluation, we observe similar526

trends as in the in-domain evaluation, as shown in Table 1.527

Specifically, FedAG outperforms all baselines, and CLIPzero528

performs better than classical models. However, compared529

to the in-domain evaluation results, the performance gaps530

between the centralized PEFT models (i.e., CLIPLoRA and531

CLIPadapter) and CLIPzero are not as significant. In fact,532

their performance is even worse than that of FedOT in sev-533

eral domains. These results highlight the limitations of exist-534

ing models in generalizing out-of-domain knowledge.535

In contrast to existing approaches, our proposed FedAG536

consistently achieves superior performance, leading to sig-537

nificant improvements in accuracy. For instance, in the538

Quickdraw domain of the DomainNet dataset, our approach539

demonstrates a 36% performance increase compared to the540

best baseline FedOT. These results strongly indicate that our541

model effectively handles out-of-domain knowledge.542

5.3 Abaltion Study543

We use the following baselines to validate the effectiveness544

of our model design. FedAGmome does not use momentum545

update (i.e., Eq. (1)) for the local model after receiving the546

learned global model. FedAGquality denotes removing data547

quality estimation in Eq. (6). FedAGcross denotes remov-548

ing the module of attention-regularized cross-domain learn-549

ing. FedAGreg means that we remove the designed attention-550

based regularization term R in Eq. (10).551

The results of the ablation studies on the DomainNet 552

dataset are presented in Table 3. It is evident that removing 553

each designed module results in a performance drop, under- 554

scoring the necessity of each module. Interestingly, the in- 555

domain results suggest that cross-domain learning may not 556

be as crucial compared to momentum updates and data qual- 557

ity estimation. However, in the out-of-domain evaluation, 558

FedAGcross plays a significant role, as its removal leads to 559

a dramatic performance drop. These findings align with the 560

motivations behind our model design, emphasizing the im- 561

portance of the cross-domain learning module in addressing 562

the out-of-domain issue. 563

6 Conclusion 564

In this study, we introduced Federated Adapter Generaliza- 565

tion (FedAG), an innovative federated fine-tuning approach 566

designed to address the challenges of domain-specific char- 567

acteristics and out-of-domain generalization in vision founda- 568

tion models. Using multiple fine-grained adapters and novel 569

learning modules, FedAG effectively integrates domain- 570

specific knowledge and enhances generalization across di- 571

verse domains. Our extensive experiments on various 572

datasets validate the efficacy of FedAG, showing perfor- 573

mance improvements over traditional fine-tuning methods. 574

This work underscores the importance of developing feder- 575

ated learning strategies that respect data privacy while main- 576

taining high model performance across different domains, 577

paving the way for more robust and adaptable vision foun- 578

dation models. 579
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Alexander Isenko, Shiqiang Wang, Ruben Mayer, and703

Hans-Arno Jacobsen. A survey on efficient federated704

learning methods for foundation model training. arXiv705

preprint arXiv:2401.04472, 2024.706

[Wu et al., 2022] Kan Wu, Jinnian Zhang, Houwen Peng,707

Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan.708

Tinyvit: Fast pretraining distillation for small vision trans-709

formers. In European Conference on Computer Vision,710

pages 68–85. Springer, 2022.711

[Xiao et al., 2023] Guangxuan Xiao, Ji Lin, and Song Han.712

Offsite-tuning: Transfer learning without full model.713

arXiv preprint arXiv:2302.04870, 2023.714

[Zhang et al., 2023] Zhuo Zhang, Yuanhang Yang, Yong715

Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin716

Xu. Fedpetuning: When federated learning meets the717

parameter-efficient tuning methods of pre-trained lan-718

guage models. In Annual Meeting of the Association of719

Computational Linguistics 2023, pages 9963–9977. Asso-720

ciation for Computational Linguistics (ACL), 2023.721

[Zhuang et al., 2023] Weiming Zhuang, Chen Chen, and722

Lingjuan Lyu. When foundation model meets federated723

learning: Motivations, challenges, and future directions.724

arXiv preprint arXiv:2306.15546, 2023.725


	Introduction
	Related Work
	Foundation Model in Federated Learning
	Federated Fine-tuning of Foundation Models

	Methodology
	Model Input
	Model Overview
	Client Update
	Server Update
	Inference

	Experimental Setups
	Datasets
	Baselines
	Implementation Details

	Results
	In-domain Evaluation
	Out-of-domain Evaluation
	Abaltion Study

	Conclusion

