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Abstract. We propose FedCovid, a new federated learning system based
on electronic health records (EHR), to predict COVID-19 vaccination
side effects. Federated learning allows diverse data owners to work to-
gether to train machine learning models without sharing data, ensuring
the privacy of EHR data. However, because EHR data is unique, directly
using existing federated learning models may fail. The EHR data is di-
verse, with numerical and categorical characteristics as well as consecu-
tive visits. Furthermore, each client’s data size is unequal, and the data
labels are skewed due to the small number of patients that experience
serious side effects. We present an adaptive approach to fuse heteroge-
neous EHR data and apply data augmentation techniques working with
a margin loss to overcome the data imbalance issue in the client model
training to address both challenges simultaneously in FedCovid. We rec-
ommend that when the server is updated, the data size of each client be
taken into account to lessen the impact of clients with small data vol-
umes. Finally, in order to train a stable and successful federated learning
model, we suggest a new ordinal training technique. Experiments on a
real-world dataset reveal that the suggested model is effective at predict-
ing COVID-19 vaccination adverse effects. The performance increases by
14.35%, 17.81%, and 129.36% on the F1 score, Cohen’s Kappa, and PR-
AUC, respectively, compared with the best baseline. 3

Keywords: COVID-19 vaccination · Side effect prediction · Federated
learning · Electronic health records

1 Introduction

The COVID-19 pandemic has led to 486,761,597 confirmed cases and 6,142,735
deaths globally as of April 1, 20224. One of the preventive measures to reduce
the chances of infection is getting vaccinated. There are three widely-applied
⋆ This work was done when Jiaqi Wang interned at IQVIA.
3 The source code of the proposed FedCovid is available at https://github.com/
JackqqWang/FedCovid.git

4 https://covid19.who.int/

https://github.com/JackqqWang/FedCovid.git
https://github.com/JackqqWang/FedCovid.git
https://covid19.who.int/


2 Jiaqi Wang, Cheng Qian, Suhan Cui, Lucas Glass, and Fenglong Ma�

COVID-19 vaccines, i.e., Moderna, Pfizer-BioNTech, and Johnson & Johnson’s
Janssen. According to a recent report in [15], during September 22, 2021 to
February 6, 2022, approximately 82.6 million U.S. residents aged ≤ 18 years had
received COVID-19 vaccine doses. Although COVID-19 vaccines are safe and
effective, some people may still have a few side effects after receiving the vac-
cines [31,3,25]. The common side effects include, but are not limited to, swelling,
redness, fever, headache, tiredness, muscle pain, chills, and nausea. In fact, these
symptoms are normal and are signs that the body is building immunity. A small
number of people may experience serious health events after the COVID-19
vaccination, such as anaphylaxis [30], thrombosis with thrombocytopenia syn-
drome (TTS) [28], myocarditis and pericarditis [9], and Guillain-Barre syndrome
(GBS) [27]. These rare yet serious side effects may cause death. Therefore, a chal-
lenging but practical question arises: Is it possible to predict whether people will
have COVID-19 vaccine side effects after their vaccination?

To answer this question, the first challenge that we may face is what kinds
of data can be used to learn the vaccine side effect predictor. Existing work
shows that the side effects of the COVID-19 vaccine may be related to gender
and underline diseases [10]. The Centers for Disease Control and Prevention
(CDC) also points out that women over the age of 30-49 years should be aware
of the increased risk of the TTS side effect5. Thus, the data used for predicting
vaccine side effects should contain patient demographics and historical disease
information. Fortunately, electronic health records (EHR) consist of patient de-
mographics, historical visit records, and corresponding laboratory results, which
have been commonly used for the medical predictive modeling task in recent
years [5,20,21,19]. Each visit record includes multiple diagnosis codes, procedure
codes, and medication codes. Each diagnosis code represents a disease, a symp-
tom, or an abnormal finding. Therefore, these characteristics make EHR data
suitable for being used for predicting the COVID-19 vaccine side effects.

Due to the privacy issue and the high sensitivity of EHR data, hospitals,
health insurance companies, or medical research institutes usually do not allow
others to share them with others. The second challenging issue is how to train
an accurate predictive model when stakeholders do not share their own data.
Towards this end, we propose to use an advanced technique in the machine
learning field, i.e., federated learning (FL), which enables different clients to
work cooperatively to learn a global model by only sharing model parameters,
instead of sharing data with others [24,37]. In our case, a local client, e.g., a
hospital, a research institute, or a data center in one state, trains its own model
with the local patient EHR data. After that, selected clients only need to upload
their model parameters to the server for the global model aggregation. After
aggregation, the server will distribute the global model back to active clients.
The active clients will then train their local models starting from the global
model they received with their local data. During this iterative process, local
clients collaborate to maintain a global model by acquiring concealed information

5 https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/
adverse-events.html
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from each client while maintaining data privacy. Although federated learning
approaches such as FedAvg [24] have shown their effectiveness on the image
datasets such as MNIST6, CIFAR-107, and CIFAR-1008, they may not work
well on the EHR data.

First, EHR data are heterogeneous. As we mentioned before, EHR data
contains not only demographic information but also visit information. The static
demographics include discrete gender and numerical age. The visits are time-
ordered sequential data, and each visit consists of a set of unordered discrete
codes. Thus, how to automatically integrate these types of data is a challenge.
Second, federated learning prevents each client from uploading its EHR data to
the central server, and only allows each client to solely update the prediction
model with its own data. However, the size of EHR data stored for each
client is unequal. In other words, the EHR data are not distributed in a
uniform and independent manner among customers. Each state in the United
States is treated as a data center or client in our work. The amount of EHR data
taken from each state varies due to the uneven distribution of the population
throughout the 50 states. Clients with limited data may end up with an over-
fitted model. Aggregating these "poor" client models on the server side may
jeopardize the learning of the global predictive model. Third, our goal is to
forecast the side effects of the COVID-19 vaccine. The patients who had side
effects are labeled as positive cases, whereas those who did not are labeled as
negative cases. According to existing research [31,3,25], only a small percentage
of persons have side effects. This means that the number of positive cases should
be smaller than that of negative cases in the real world. As a result, the EHR
data used for training the predictive model are imbalanced.

To address these challenges simultaneously, in this paper, we propose a novel
Federated learning framework (named FedCovid) for predicting COVID-19
vaccine side effects using EHR data extracted from the database of IQVIA9. In
particular, to address the heterogeneous data challenge, we first map each type
of data to a latent representation and then use the proposed adaptive fusion
mechanism to obtain the aggregated patient representation. Moreover, to tackle
the data imbalance issue, we propose to use the data augmentation technique
to increase the number of positive patient representations and incorporate the
metric or contrastive learning loss into the client model training. Finally, we
designed an ordinary training strategy to deal with the Non-IID issue. In contrast
to existing federated learning models such as FedAvg [24] to treat each client
equally, we classify clients into two categories according to the amount of EHR
data they have.We first train the clients with a larger size to obtain an initialized
global model. After the global model becomes stable, we then allow the clients
with a smaller amount of data to participate in the model training. In addition,
we take the size of clients into consideration when aggregating the global model.

6 http://yann.lecun.com/exdb/mnist/
7 https://www.cs.toronto.edu/~kriz/cifar.html
8 https://www.cs.toronto.edu/~kriz/cifar.html
9 https://www.iqvia.com/
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To sum up, the contributions of this work are listed as follows:

– To the best of our knowledge, we are the first to investigate the feasibility of
using advanced machine learning techniques to predict COVID-19 vaccine
side effects with EHR data.

– We propose a novel federated learning framework FedCovid to protect EHR
data privacy, fuse different types of EHR data, handle the imbalance data
issue, and tackle the Non-IID data distribution challenge simultaneously.

– We conducted extensive experiments to show the effectiveness and efficiency
of the proposed framework compared with state-of-the-art baselines. Fur-
thermore, we provide comprehensive results for hyperparameter exploration,
ablation study, and convergence analysis.

2 Related Work

Since COVID-19 was declared as a worldwide pandemic, artificial intelligence
(AI) has been applied to conduct related research, such as developing novel diag-
nostic approaches [34], drug discovery [35], spread monitor [14], and e-pharmacy
supply chain optimization [23]. There are also several reviews [26,2,1] summa-
rizing the roles of AI during the fight with COVID-19.

There are also several research studies applying federated learning (FL)
techniques on COVID-19 related topics. In [13], the authors applied a GAN-
augmented FL for COVID-image segmentation. In [8], a FL model was proposed
to predict the future oxygen requirements of symptomatic patients with COVID-
19 based on chest X-ray images. In [32], a model was trained using dispersed
raw clinical data to predict death in COVID-19-infected hospitalized patients.

Current COVID-19-related FL research, however, has a number of limita-
tions. (1) The majority of FL frameworks and models are designed for medical
picture data solely, ignoring heterogeneous EHR data. (2) In several previous
research, the present centralized machine learning approaches are simply em-
bedded into the FL architecture. Such a simplistic mix overlooks the distributed
paradigm’s merits and limitations. (3) To our knowledge, no published research
effort has investigated the COVID-19 vaccine side effect prediction utilizing dis-
tributed EHR data in a FL scenario, specifically to address the problems of
imbalanced data and Non-IID concerns in the real-world setting.

3 COVID-19 Vaccine EHR Data

3.1 Dataset Overview

We extracted the EHR data from the health insurance claims database of IQVIA.
Similar to other types of data [38,36], EHR data are heterogeneous, which
include patients’ age, gender, zip code, diagnosis codes within each visit, the
vaccine brand, and a binary label of the side effects. In this extracted dataset,
there are 6,526 patients with COVID-19 vaccinated. 1,097 of them have side
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Table 1: Data statistics of the extracted EHR dataset.
Patient Count 6,526 Moderna 3,355
Positive Patient Count 1,097 Pfizer-BioNTech 2,159
Negative Patient Count 5,429 Janssen 1,012
Male 1,761 ICD Code Count 803
Female 4,765 State Count 29
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Fig. 1: Patient geographical distribution across states. The states marked in green
color are the ones with the total number of data larger than 200.

effects who are labeled as 1, and 5429 of them have no side effects who are
labeled as 0 on the record. The imbalanced label ratio is around 1:5 (# of
positive labels : # of negative labels). The vaccine brands include Moderna,
Pfizer-BioNTech, and Johnson & Johnson’s Janssen. The number of patients
with the brands of vaccines is 3,355, 2,159, and 1,012, respectively. The basic
statistic of the dataset is shown in Table 1.

The dataset also provides geographic visualization via the zip codes. Based
on the zip code information, patients are from 29 states. However, the data
distribution of states is extremely unequal. There are 1,409 patients from
CA, while there are only 35 patients in MD, OK, and UT in the dataset. We
highlight the 10 states with more than 200 patients in green and visualize the
data with geological information in Figure 1. There are 19 states where the
data is less than 200 patients, which raises a small data challenge. When we
do global model aggregation for federated learning, how we treat the models
trained by the small clients appropriately will be a new practical challenge for
the COVID-19 vaccine side effect prediction task.

3.2 Training and Test Data Construction

As it is not a benchmark dataset with a well-established training and test split,
we will introduce how we create our training and test datasets. To keep as much
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Table 2: Training and testing data statistics.
Training Testing

# Patient 5,006 # Patient 1,520
# Positive Patient 879 # Positive Patient 218
# Negative Patient 4,127 # Negative Patient 1,302
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Fig. 2: Training and test data label ratio for each state.

of the original information as possible, we split the data based on the geological
information and label distribution. To preserve data privacy, we treat each state
as an individual client in our framework. For each state, we randomly sample
80% data for training and 20% data for testing on positive labels and negative
labels accordingly.

After that, we keep the training data of each state locally for each client to
train the local model. We merge the test data from each state into a large dataset
for testing the performance of the global model. In such a way, we preserve the
data privacy for each state without sharing patients’ data for model training.
On the other hand, we construct the training and test data while preserving as
much of the geologically similar label distribution as possible.The basic statistics
of the training and test data are shown in Table 2. The label ratio of training
and test data from different states is visualized in Figure 2.

4 Task & Notation

In this paper, we focus on a real-world application scenario where each state
holds its patients’ EHR data and cooperates with other states’ data to obtain a
COVID-19 vaccine side effect prediction model. Assume that we have K clients
or state data centers, and the EHR dataset on the k-th client is denoted as
Dk = {Xk

i , y
k
i }

Nk
i=1, where Xk

i represents the EHR data of the i-th patient in the
k-th client, yki is the corresponding binary label, and Nk is the number of patient
EHR data stored in the k-th client.

As we mentioned before, EHR data are heterogeneous, and Xk
i :=

{Zk
i ; a

k
i ;V

k
i }, where Zk

i is the categorical feature set including gender gki and
vaccine brand bki , aki is the numerical feature age, and V k

i is the time-ordered
visit information. V k

i = {xk
i,1, x

k
1,2, · · · , xk

i,Mi
}, where xk

i,m represents the medical
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Table 3: Notations table.
Symbol Definition and description

Dk The set of dataset on the k-th client
Xk

i The EHR record of patient i at client k

yk
i ∈ {0, 1} Vaccine side effect label of patient i on the k-th client

gki Gender of patient i on the the k-th client
ak
i Age of patient i on the the k-th client
bki Vaccine brand information of patient i on the k-th client
xk
i,m Medical code of patient i at visit m on the the k-th client
K The number of clients
B The number of active/selected clients

code set that patient i received at visit m, and Mi denotes the number of visits
of patient i.

There are 29 states in our dataset, which are treated as 29 clients in our FL
framework. The goal of this paper is to jointly train client models [w1, · · · ,wK ]
using the data {Dk}Kk=1 stored in all clients, where K = 29. Furthermore, we
consider the challenges of local model training and global model aggregation
raised by the imbalanced labels, Non-IID issue, and small data. We summarize
the key notations used in the following sections in Table 3.

5 Methodology

5.1 Model Overview

Figure 3 shows the overview of the proposed federated learning framework
FedCovid, which mainly contains the local update and the server update. During
the local update, each client k will use the local training data Dk to update the
model parameter wk. In particular, we propose to learn each patient’s embedding
by aggregating multiple types of EHR data via an adaptive fusion mechanism.
Furthermore, to address the imbalance issue, we propose augmenting the embed-
dings for the positive patients. Finally, a hybrid fusion loss is used to train the
local model wk. After the local update, active client parameters [w1, · · · ,wB ]
will be uploaded to the server. In the server update, the global model wg is
obtained by aggregating [w1, · · · ,wB ] as well as taking the contribution score
βk of each local model wk. Note that we first use the clients with larger size
to learn the warm-up global model wg, and then all the clients will be added
into the model learning. This new ordinal training strategy aims to alleviate the
small data issue. Next, we show the details of each component of the proposed
FedCovid framework.

5.2 Local Update: Patient Representation Learning

Patient EHR data contains categorical, numerical, and sequential information.
For each type of information, we need to map it to a latent vector representation.
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Fig. 3: Overview of the proposed FedCovid model.

Embedding Numerical and Categorical Features We first handle patients’
demographic information, including age, gender, and COVID-19 vaccine brand.
We treat the age information aik as a numerical feature. For the gender gki
and COVID-19 vaccine brand information bki , we treat them as the categorical
features. We feed these two kinds of features into multi-layer perceptrons (MLPa

and MLPc) to learn the latent representations for patient i at client k as given
by Eq. (1) as follows:

hk
i,a = MLPa(a

k
i ); hk

i,c = MLPc(g
k
i , b

k
i ). (1)

Embedding Sequential Visit Data EHR data also contain the time-
ordered sequential visit information V k

i = {xk
i,1, x

k
1,2, · · · , xk

i,Mi
}. Several ap-

proaches [5,20,21,19,22] are proposed to embed the visit data built upon long
short-term memory network (LSTM) [16], bidirectional LSTM (Bi-LSTM)[29],
convolutional neural network (CNN) [17], and Transformer [33]. Using these
backbone models, we can learn the visit embedding as follows:

hk
i,v = Mb

(
V k
i

)
, (2)

where Mb denotes the backbone approach used for embedding the visit data.

Adaptive Embedding Fusion The three latent embeddings are obtained from
different types of data and models. Here we design an embedding fusion approach
to combine the three embeddings in an adaptive approach via a gated linear unit
(GLU) [7]. We first concatenate these embeddings as hk

i = [hk
i,a,h

k
i,c,h

k
i,v] and

then map hk
i to a new representation as follows:

hk
i

′
= Wk

i h
k
i , (3)
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where Wk
i is a learnable weight matrix. We then learn a weight for each element

in hk
i
′ via a Sigmoid function, i.e.,

ϕk
i = sigmoid(hk

i

′
). (4)

Finally, the element-wise multiplication ◦ is used to generate the patient repre-
sentation as follows:

pk
i = ϕk

i h
k
i

′
. (5)

5.3 Local Update: Data Augmented Hybrid Local Training

Using Eq. (5), we can fuse different types of EHR data together to learn an
aggregated patient representation, which can be directly used for prediction.
However, as mentioned before, there is another challenge for our setting – im-
balanced data. To address this problem, we propose using data augmentation
techniques to balance the data, as well as a margin loss to differentiate between
positive and negative patient representation learning.

EHR Data Augmentation Data augmentation approaches have been widely-
used for image classification tasks such as rotating, flipping, or mixup tech-
nique [4], and natural language processing tasks, e.g., example interpolation
techniques and model-based techniques [12]. However, EHR data is heteroge-
neous, with categorical features, numerical features, and discrete EHR sequence
data, making it difficult to directly add small noise to the raw data. To address
this issue, we implement the augmentation on the learned embeddings via Eq. (5)
rather than the raw input Xk

i . The assumption is that if the patients are similar
to each other, then the learned patient representations should also be similar.

Since the number of positive patients is much smaller than that of nega-
tive ones, we only need to increase the number of positive cases to make these
two classes balanced. In particular, we add a noise vector ∆k

i generated from
a Gaussian distribution with parameters {µ, σ} to the learned positive patient
embeddings via Eq. (5), where µ is the mean value and σ is the standard devia-
tion for the Gaussian distribution, i.e., p̂k

i+ = pk
i+ +∆k

i . Due to the 1:5 ratio of
positive and negative labels in our dataset, for each positive data, we will add
four randomly generated noise vectors, respectively.

Hybrid Local Training Loss Let P̂k
+ represent the representation matrix of

the augmented positive data, Pk = [Pk
+,P

k
−] denote the real data representation

matrix, where Pk
+ represents the matrix of the real positive data and Pk

− is the
matrix of the real negative data. Using P̂k

+ and Pk, we can directly train our
local model using the cross entropy (CE) loss. To avoid the influence of noise, we
will assign different weights to the loss terms of the real data and the augmented
data as follows:

Lk
c =

1

Nk
CE(f(Pk),yk) +

λc

N+
k

CE(f(P̂k
+),y

k
+), (6)
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where λc is a hyperparameter, yk = [yk
+,y

k
−] is the ground truth label vector of

all real data, yk
+ is the positive label vector, yk

− is the negative label vector, and
N+

k is the total number of augmented data.
To further learn the distinguishable patient representations, we also add a

pair-wise margin loss to Lk
c as follows:

Lk
m =

1

Nk +N+
k

Nk+N+
k∑

i=1

max(d(p̃k
i , p̄

k
j+)− d(p̃k

i ,p
k
j′−) + δ, 0), (7)

where d(·, ·) is the Euclidean distance function, p̃k
i ∈ {Pk, P̂k

+} presents any data
representation (i.e., the anchor sample), p̄k

j+ ∈ {Pk
+, P̂

k
+} is any positive real or

augmented representation, pk
j′− ∈ Pk

− is a negative patient representation, and
δ is the predefined margin value.

These two loss terms Lk
c and Lk

m all consider to update the local parameters
based on the data. However, when the amount of data on the k-th local client
is extremely small, only optimizing these two terms may cause the overfitting
problem. To avoid this issue, we add an extra regularization term, which forces
the local parameters wk to be as close as the global model wg, i.e., ∥wk −wg∥2.
In such a way, we can obtain the final hybrid loss as follows:

Lk = Lk
c + λmLk

m +
λw

Nw
∥wk −wg∥2 , (8)

where λm and λw are trade-off hyperparameters, and Nw is the number of model
parameters. Using Eq. (8), we can learn the local parameter set wk and then
upload it to the server side.

5.4 Server Update: Client Size-aware Aggregation

At each communication round, the server side will receive B client models
[w1, · · · ,wB ]. In general, we can follow FedAvg [24] to directly average them
to obtain the global model wg. As we discussed before, the data size of each
local client is unequally. The client with small size may not learn an accurate
model by optimizing Eq. (8), and the average operation may destroy the learning
of wg.

To avoid this problem, we propose to upload the size of each client and
quantify the contribution of each client according to its size. The larger size, the
more reliable, and the greater weight. Let βk denote the contribution weight of
the k-th client, which is defined as follows:

βk =
log(Nk)∑B
i=1 log(Ni)

. (9)

Using [β1, · · · , βB ], we can obtain the updated global model as follows:

wg =
1

B

B∑
k=1

βk ∗wk. (10)
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wg will be downloaded to each selected or active client for the next round local
model training. This procedure will iteratively run until the model converges or
achieves the maximum number of communication round.

5.5 Ordinal Training Strategy

As shown in Figure 2, most of clients only contain a small number of data and
they have a higher probability to be selected if we use traditional federated
learning training strategy. This may lead to a bad global model learning. To
address this issue, we propose to divide the clients into two groups according to
their size. We first train the model with the larger size clients. This stage can be
considered as model warmup or initialization. After we get the initialized model
wg, we then allow smaller clients to join the training. In particular, we lower the
number of epochs and learning rates when training their local models compared
with those used for the larger ones. This straightforward training strategy tries
to make the negative effect caused by the smaller clients as low as possible.

6 Experiment

6.1 Experiment Setup

Dataset In our experiments, we use the dataset that is introduced in Section 3.

Baselines We use the following federated learning approaches as baselines:

– FedAvg [24] is the classical baseline. Active local clients train their own mod-
els and upload the model parameters to the server. The server averages the
parameters of local models and re-distributes the updated global model back
to active clients for the next round local training.

– FedProx [18] adds a reference loss in local training for each client to measure
the distances between the local model and the global model, which constrains
the local personalized optimization process not to drift excessively.

– Per-FedAvg [11] is a personalized federated learning algorithm inspired by
meta learning to find an initial shared model that can be easily adapted to
local datasets within limited steps of updates.

Implementation Details We implement all models with Pytorch on Ubuntu
20.04 with NVIDIA RTX A6000 GPU. We leverage the training and testing
datasets constructed in Section 3.2. The hyperparameters δ, λc, λm, and λw in
the loss function Eq. (8) are set to 1

5 , 1
2 , 1

6 , and 1
3 , respectively.

The total communication round is 400, where we set the warmup round as
200 to train the clients’ models with larger clients (i.e., CA, NY, FL, OH, TX,
KY, MI in Figure 2). We set the learning rate as 0.001 at the warmup stage and
0.01 after the warmup stage. For the small clients, we set the learning rate as
0.001 after the 200 communication round when they are selected to contribute
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Table 4: Performance comparison
Setting Algorithm F1 Score Cohen’s Kappa PR-AUC

Central Training CNN 0.4855 0.4279 0.4270
Transformer 0.4680 0.3842 0.4382

Federated Training

FedAvg 0.4081 0.3138 0.1376
FedProx 0.4083 0.3129 0.1368
Per-FedAvg 0.3722 0.2669 0.1361
FedCovid 0.4669 0.3697 0.3156

to the model updates. Baselines do not use the ordinal training strategy, they
treat all client equally and use the same learning rate 0.001. In this paper, we
apply Transformer as Mb in Eq. (2) to embed the visit data. In particularly,
we employ a two layer Transformer with hidden dimension of 16 and number of
heads 8, and apply max-pooling to the output sequence to get the EHR latent
embedding. All approaches use Adam as the optimizer, except for Per-FedAvg
that uses the SGD optimizer.

6.2 Performance Evaluation

We conduct experiments on the dataset introduced in Section 3.2 to validate the
proposed approach and baselines. Since the dataset is imbalanced, we use F1
score, Cohen’s Kappa, and Area Under the Precision-Recall Curve (PR-AUC)
as the evaluation metrics following [6]. We report the average values of the last
10 rounds of the test results at the server side in Table 4.

To explore the performance upper bound of the federated setting, in this
experiment, we also put all the training data together to train a prediction
model in the central training setting. We use CNN and Transformer as Mb to
embed the visit data. The network structure of Transformer is the same as that
of FedCovid. For the CNN model, we use a 1D CNN with kernel size 3 and
step size 1. The output channel dimension is set to 2, and we apply a flatten
operation to get the visit latent embedding. In Table 4, we can observe that the
performance of central training-based approaches is better than that of federated
learning approaches.

In the federated setting, FedAvg and FedProx have similar performance,
which demonstrates that the reference loss in FedProx may not work for the
clients with small size. Due to the unique challenges of the EHR datasets as
we discussed in Section 3, the personalized federated learning approach Per-
FedAvg does not outperform FedAvg and FedProx. We can also observe that
the proposed FedCovid achieves the best performance in terms of three metrics.
Compared with the best performance of baselines (with underline in Table 4),
the performance of our proposed FedCovid model increases 14.35%, 17.81%, and
129.36% on F1 score, Cohen’s Kappa, and PR-AUC, respectively.
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Table 5: Ablation study
Approach F1 Cohen’s Kappa PR-AUC

EHR Concatenation in Section 5.2 0.4365 0.3356 0.2832
CE Loss Only in Section 5.3 0.4150 0.2775 0.2204
Average Aggregation in Section 5.4 0.4486 0.3093 0.2996
Normal Federated Training in Section 5.5 0.4306 0.3266 0.2817
FedCovid 0.4669 0.3697 0.3156

6.3 Ablation Study

In the proposed FedCovid model, we design several novel mechanisms. To in-
vestigate the contribution of each component, we conduct the following ablation
study and the results are shown in Table 5. To validate the benefit of the pro-
posed adaptive EHR fusion mechanism in Section 5.2, we use the simple EHR
concatenation operation to learn patient representation. CE Loss Only aims
to validate the power of data augmentation and the margin loss for handling the
imbalance issue in Section 5.3. The approach of Average Aggregation is to
prove the usefulness of the proposed client size-aware aggregation in Section 5.4.
The goal of Normal Federated Training is to show the advantage of ordinal
training strategy proposed in Section 5.5.

From the results listed in Table 5, we can observe that compared with the
proposed FedCovid, the performance of all comparison approaches drops, espe-
cially for the CE Loss Only. However, they all outperform the best baselines in
Table 4. These results can clearly confirm that each mechanism used in FedCovid
is necessary and essential to improve the prediction performance. The contribu-
tion descending order in boosting performance is (1) data augmented hybrid loss
for training client model, (2) ordinal training strategy, (3) adaptive EHR fusion,
and (4) client size-wise model aggregation.

6.4 Convergence Analysis

Figure 4 show the performance changes with regards to each communication
round. We can observe that the F1 score also increases dramatically at the be-
ginning and then become stable until 200 communication round. In this warmup
stage, we use clients with larger size to train the global model. After the 200th
communication round, the performance sharply increases again. This shows that
even using the small size of client data, FedCovid can still boost the performance
can make the model converge.

6.5 Hyperparameter Sensitivity Analysis

In this subsection, the number of communication rounds for warm-up is very im-
portant. To investigate the affect of this parameter on the performance change,
we conduct the following experiment. Let γ controls the warmup round for
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Fig. 5: Hyperparameter analysis

the large states. Ideally, with the increase of γ, model performance will first
increases and then decreases, as there is a trade-off between a well-trained
global model and the generalization. To validate this assumption, we alter γ
as {100, 150, 200, 250, 300}, and the results are shown in Figure 5. We observe
that the performance increases first and then decreases with the increase of the
warmup round. The reason is that the warmup stage lasts too long, which makes
the global model not able to capture enough information from the small states
given a fixed communication round and further affects the generalization of the
global model. This observation is in accord with our assumption.

7 Conclusion

In this study, we propose FedCovid, a new federated learning model for predict-
ing COVID-19 vaccination side effects. As far as we know, this is the first work to
apply a federated learning framework using EHR data to predict COVID-19 side
effects. FedCovid solves the following challenges caused by EHR data, including
EHR data heterogeneity issue, label imbalanced problem, and client size differ-
ence challenge, in a single framework. We conduct experiments on a real world
EHR dataset provided by IQVIA. Experimental results show that the proposed
FedCovid outperforms baselines in terms of three different metrics, including F1
score, Cohen’s Kappa, and PR-AUC. An ablation study demonstrates that all
designed mechanisms are useful to improve the prediction performance. Finally,
the model insight analysis shows the convergence and hyperparameter sensitivity
of the proposed FedCovid model.
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