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Abstract: Federated learning (FL), which provides a collaborative training scheme for distributed data
sources with privacy concerns, has become a burgeoning and attractive research area. Most existing
FL studies focus on taking unimodal data, such as image and text, as the model input and resolving
the heterogeneity challenge, i.e., the challenge of non-identical distribution (non-IID) caused by a
data distribution imbalance related to data labels and data amount. In real-world applications, data
are usually described by multiple modalities. However, to the best of our knowledge, only a handful
of studies have been conducted to improve system performance utilizing multimodal data. In this
survey paper, we identify the significance of this emerging research topic of multimodal federated
learning (MFL) and present a literature review on the state-of-art MFL methods. Furthermore, we
categorize multimodal federated learning into congruent and incongruent multimodal federated
learning based on whether all clients possess the same modal combinations. We investigate the
feasible application tasks and related benchmarks for MFL. Lastly, we summarize the promising
directions and fundamental challenges in this field for future research.
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1. Introduction

In various real-world scenarios, data are usually collected and stored in a distributed
and privacy-sensitive manner—for instance, multimedia data on personal smartphones,
sensory data from various vehicles, and examination data and diagnostic records of patients
across different hospitals. The significant volume of sensitive yet multimodal data being
collected and shared has heightened people’s concerns regarding privacy protection. Con-
sequently, there has been an emergence of increasingly stringent data regulation policies,
such as the General Data Protection Regulation (GDPR) in the European Union and the
Health Insurance Portability and Accountability Act (HIPAA) in the United States. These
regulations have given rise to challenges in data collaboration and have raised privacy
concerns for traditional centralized multimodal machine learning approaches [1].

To address these data privacy concerns, a novel paradigm called federated learning
(FL) [2] has been introduced. This approach enables distributed clients to collaboratively
train a high-performing global model without sharing their local data, effectively pre-
venting privacy leakage through data transmission. However, the majority of previous
works have focused on the unimodal setting, where all the clients in the federated system
hold the same data modality, as shown in Figure 1 (left). Among these studies, statistical
heterogeneity [3], i.e., the non-IID challenge, caused by the skew of labels, features, and
data quantity among clients, is one of the most critical challenges that has attracted much
attention [4–8]. In contrast, multimodal federated learning, as shown in Figure 1 (right), fur-
ther introduced the modality heterogeneity challenge, which led to significant differences
in model structures, local tasks, and parameter spaces among clients, thereby exposing the
substantial limitations of traditional unimodal algorithms.
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Federated systems trained with multimodal data are intuitively more powerful and
insightful compared to unimodal ones [1]. We define the modality types held by the
clients as their modality combinations, which determine the local tasks they perform. If
two clients hold the same or similar modality combinations (e.g., both image and text
data), they have a smaller semantic gap and task gap. In other words, the more congruent
modality combinations the clients hold, the less heterogeneous the modality distribution of
the system.

Client a Client b

Traditional FL with unimodal clients

Client 1 Client 2 Client 3

(Mobile Devices) (Smart Camera)(Mics/Keyboard)

Audio
Text

Multimedia Video
Sensor

Multimodal FL with incongruent clients

Identical data 
modality and 
local model

Identical data 
modality and 
local model

Figure 1. Illustration of traditional unimodal FL v.s. multimodal FL.

Based on the congruence of modality distribution, MFL can be divided into two
categories: congruent MFL and incongruent MFL, as depicted in Figure 2. In congruent
MFL, the clients hold similar or the same local modality combinations, and horizontal FL is
the typical setting of this type. The majority of existing MFL work [9–12] has also focused
on this federated setting, where all the clients hold the same input modality categories and
feature space but differ as to the sample space. In [10], the authors proposed a multimodal
federated learning framework for multimodal activity recognition with an early fusion
approach via local co-attention. The authors in [12] provided a detailed analysis of the
convergence problem of MFL with late fusion methods under the non-IID setting. In the
healthcare domain [13–15], congruent MFL has shown great application value by providing
diagnosis assistance with distributed digital health data.

 Multi-modal Federated Learning

 Congruent MFL

 Incongruent MFL

 Horizontal MFL

 Vertical MFL

 Transfer MFL

 Hybrid MFL

Figure 2. Taxonomy of multimodal federated learning (MFL).

For incongruent MFL, the clients usually hold unique or partially overlapped data
modality combinations, which makes the federated optimization and model aggregation
more challenging. This category contains vertical multimodal federated learning (VMFL),
multimodal federated transfer learning (MFTL), and hybrid multimodal federated learning
(hybrid MFL). In VMFL, the clients hold different input modalities and feature spaces,
but all the data samples are in the same space. In [16], the authors assumed that each
client only held one specific modality and, correspondingly, proposed FDARN, a five-
module framework, for cross-modal federated human activity recognition (CMF-HAR). For
MFTL, the clients mainly differ as to feature spaces (e.g., photographic images and cartoon
images) and sample ID spaces. For instance, in [17], the authors proposed a fine-grained
representation block named aimNet. They evaluated their methods under different FL
settings, including the transfer setting between two different vision–language tasks.

Hybrid MFL is a more challenging setting, where the data relationships among the
clients cannot be appropriately described by any of the above three settings alone. The
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clients in a hybrid setting can hold different local data, varying in terms of both modality
categories and quantities. Given M modalities in a federated system, the theoretical client
types are 2M − 1, including both unimodal and multimodal clients. Ref. [18] discussed a
significant challenge for hybrid MFL, i.e., modality incongruity, where the unique modality
combination among the clients enlarges the heterogeneity. They proposed FedMSplit for
multitask learning in the hybrid MFL setting, with a graph-based attention mechanism to
extract the client relationship for aggregation.

Based on our observation of the increasing interest among researchers in exploring
the challenges of multimodal data in FL [10,11,15,16,19,20], multimodal federated learning
has emerged as a promising and practical topic with numerous application scenarios.
However, much of the research in this area has been conducted in customized multimodal
federated learning scenarios, lacking categorization and standardization. The diverse and
varied nature of this field emphasizes the need for a systematic investigation and study on
multimodal federated learning topics. Therefore, we present our perspective on exploring
multimodal data in federated learning and outline our contributions below:

• We conducted a comprehensive literature review on existing multimodal federated
learning research, leading to the formal definition of multimodal federated learning
(MFL). We also introduced essential concepts like modality combination and modality
heterogeneity, which distinguish MFL from traditional FL.

• To enhance the clarity and organization of the field, we classified existing MFL work
into four categories: horizontal, vertical, transfer, and hybrid MFL. By expanding upon
traditional unimodal federated learning, this categorization provides a structured
framework for the design and development of subsequent MFL research, facilitating
method comparison and advancement.

• Given the current lack of well-defined evaluation benchmarks for MFL, we thoroughly
examined feasible application scenarios of MFL and surveyed relevant and suitable
open-source benchmark datasets that can serve as valuable resources for researchers
in this domain.

• We identified and summarized significant challenges and potential research directions
in MFL, shedding light on unique issues such as modality heterogeneity and missing
modalities. These insights offer valuable guidance for future research and innovation
in the field of multimodal federated learning.

The rest of this paper is organized as follows. We introduce the methodology used to
conduct the literature review in Section 2. In Section 3, we summarize the three popular
aspects for mitigating the statistical heterogeneity in unimodal federated learning systems.
In Section 4, we present preliminaries and a formal definition of multimodal federated
learning. In Section 5, we categorize multimodal federated learning into four types based
on the input modalities of the clients. We introduce the common tasks and benchmarks
for MFL in Section 6 and Section 7, respectively. Section 8 identifies the challenges and
promising research directions, as well as the potential application scenarios.

2. Methodology

The exploration of multimodal data in federated learning is still in its nascent stage.
Below, we introduce the process we followed to collect and analyze the related papers.

2.1. Search Strategy

We identified related literature in the multimodal federated learning field by perform-
ing comprehensive searches in multiple databases including IEEE Xplore, ACM Digital
Library, Google Scholar, and arXiv. Specifically, we used the following keywords in com-
bination to ensure a broad and inclusive search. The keywords of the search queries
included “multimodal federated learning”, “cross-modal federated learning”, “collabora-
tive learning”, “multimodal data”, and their combinations. The search was conducted up
to 23 June 2023, and all papers satisfying our search criteria until that date were considered
for inclusion in this survey.
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2.2. Search Criteria

To ensure the relevance and quality of the papers included in this survey, specific
inclusion and exclusion criteria were applied during the screening process. We included
the paper if it satisfied all the following criteria:

1. Pertinent to multimodal federated learning or closely related topics;
2. Written in English;
3. Published in peer-reviewed conferences or journals;
4. Full-text access;
5. Clear cross-validation and comparison with related literature;
6. Evaluation on the rigor of the research methodologies and the significance of the

contributions.

2.3. Screening Process

As shown in Figure 3, the literature search and selection process was conducted via
two stages. In the first stage, we obtained 44,300 records according to the keyword-based
search in different databases. We removed 20,770 records due to duplication. According
to the relevance of the titles and abstracts, we further selected 46 papers for the second
stage of the screening by reviewing the paper content. Finally, we selected 19 papers for
our review purpose based on the inclusion criteria.

44,300 records are 
identified via database 

searching(Google Scholar, 
IEEE Xplore, ACM Digital 

Library, etc)

23,530 records after 
duplication removal

46 records after keyword 
relevance selection on 

title and abstract

19 records selected after 
eligibility assessment

Figure 3. A diagram of the screening process.

3. Federated Learning for Unimodal Heterogeneity

To mitigate the optimization divergence caused by heterogeneity challenges and
increase the system robustness under the non-IID setting, existing unimodal methods
have mainly been proposed from three perspectives: federated convergence optimization,
personalized federated learning, and federated multitask learning.

3.1. Federated Convergence Optimization

From the convergence optimization perspective, Zhao et al. in [4] investigated the
under-performance problem of FedAvg [2] under the non-IID setting. They demonstrated
that weight divergence caused the performance reduction issue and provided further
analysis on this subject. In [21], the authors discovered that non-IID data caused the
problem of client drift in the uploading process and affected the system convergence rates.
FedProx [22] modifies the local objective of each client, adding a proximal term to it. In [23],
the authors proposed SCAFFOLD to mitigate the client drifts between the local models and
the global model. In [24], FedBVA decomposed the aggregation error into bias and variance
for collaborative adversarial training in order to improve convergence and performance.
In [6], the authors introduced reinforcement learning into the federated global update
stage, where the server dynamically selected a subset of clients with the highest rewards to
mitigate the heterogeneity challenge. The mutual target of these studies was to mitigate the
divergence or drift problem during global updating so that the framework could achieve a
more generalized global model.

3.2. Personalized Federated Learning

Personalized federated learning [25] is a research topic proposed to handle the sta-
tistical heterogeneity challenge (i.e., the non-IID setting) from another perspective, and
many existing methods aim to provide each client with personalized adaptation instead of
a one-fits-all global solution. Ruan and Joe-Wong in [26] proposed FedSoft, which reduced
the clients’ workload using proximal updates and brought both personalized local models
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and global cluster models. PerFedAvg [27] adapted meta-learning into the FL framework,
where it treated the global model as a meta-model to provide a few-shot adaptation for each
client. In [28], the authors added Moreau envelopes as a regularization term in the local loss
functions to help achieve personalized model optimization. In [29], the authors reassem-
bled models and selected the most fitted personalized models for clients by calculating
the similarity.

3.3. Federated Multitask Learning

Instead of seeking a general solution, federated multitask learning [30] aims to find
personalized models for each client by utilizing the similarity among them. MOCHA [30]
was the first proposed federated multitask learning framework for convex models.
Corinzia et al. in [31] proposed VIRTUAL, which used approximated variational infer-
ence and simulated the federated system with a star-shaped Bayesian network. Marfoq
et al. in [32] used a federated expectation-maximization algorithm to solve the multitask
problem with a mixture of unknown underlying distributions.

The existing methods have shown great achievements in alleviating the statistical
heterogeneity challenge via global optimization or learning personalized local models.
However, as the heterogeneity among different client distributions diverges, the unified
global model may not exist. Especially in the multimodal setting, federated clients could
have different local model structures due to the modality heterogeneity, which makes the
general solution more unfeasible. Local model personalization could also be inapplicable,
due to the differences in both feature space and parameter space for MFL. In such a
case, exploring multimodal data under the federated learning paradigm cannot rely on
a direct combination of the existing techniques. Instead, the introduction of modality
heterogeneity among the clients brings unique obstacles and makes the existing challenge
even more demanding.

4. Preliminaries of Multimodal Federated Learning

Compared to unimodal federated learning, we define multimodal federated learning
as federated systems containing at least two data modalities among all the local datasets. In
the following, we will formally define multimodal federated learning using the multimodal
classification task as an example.

In a multimodal federated learning system, given K clients and a modality category
number M, where K ≥ 2 and M ≥ 2, each client k is assumed to have access to a local
dataset Dk, which contains a group of data sample IDs. The size of the dataset is determined
by the number of sample IDs, i.e., |Dk|; Mk represents the total data modality number
for client k; and Mk ∈ [1, M]. If Mk = 1, client k is called the unimodal client, and it is a
multimodal client if Mk > 1.

To identify the types of clients based on their local data modalities, we define the local
multimodal dataset Dk of an arbitrary client k as

Dk = {(xm1
k , xm2

k , . . . , x
mMk
k , yk)i}

|Dk |
i=1 , (1)

where xm
k represents a data sample of m-modality in client k. The i-th data sample of the

k-th local dataset is Xk(i) = (xm1
k , xm2

k , . . . , x
mMk
k )i. The modality combination of this local

set is defined as Xk = (m1, m2, . . . , mMk ). As an example, for client a containing both image
and text data, its modality combination is Xa = (image, text), and its i-th local data sample
is Xa(i) = (ximage

a , xtext
a )i. Therefore, its modality number Ma is 2.

In a communication round t, the local model θt
k of client k can be updated by a local

training process via stochastic gradient descent (SGD):

θt+1
k = θt

k − µ∇Lk(Xk, θt
k, yk), (2)
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where µ is the learning rate of the local training process; Xk is the corresponding local
multimodal data; Lk represents the total loss function of client k with multimodal input
data Xk; and θt

k is the local model of client k parameters at communication round t.
Multiple modalities can make different contributions to the final loss affected by the

problem context, data quality, and downstream tasks. For instance, in an image–text pair
classification task, we may set a higher weight for the loss computed from image data and
a lower one for text data. Therefore, given the input Xk(i), the total loss Lk is defined as

Lk(Xk(i), θt
k, yk(i)) =

Mk

∑
j=1

ϕ
mj
k l

mj
k (Ck(x

mj
k ; θt

k), yk(i)) (3)

Here, ϕ
mj
k represents the sum weight of modality mj; Ck is the local model of client k;

l
mj
k is the loss function for modality mj; and x

mj
k is the input data of modality mj.

Accordingly, we define the local training target as follows:

fk =
1
|Dk|

|Dk |

∑
i=1
Lk(Xk(i), θk, yk(i)) (4)

Thus, the global optimization target is defined as

min
θG

F(θG) =
K

∑
k=1

ωk fk(θk), (5)

where θG is the global model parameters; ωk is the global aggregation weight for client k;
and K is the total number of clients.

5. Taxonomy of Multimodal Federated Learning

In [33], federated learning is categorized into horizontal federated learning, vertical
federated learning, and federated transfer learning based on the data distribution character-
istics. This previously proposed three-way division can clearly identify different categories
of federated learning settings in unimodal scenarios.

However, it is not appropriate to directly adapt this categorization to multimodal
federated learning. As the modality number of the local data expands, the distribution
characteristics of the clients become more divergent. It is not illustrative enough to describe
the data distribution relationship in such a way, especially when the clients contain different
combinations of data modalities, i.e., the modality incongruity challenge proposed by [18].

For instance, in a mental health prediction task, three mobile users participating
in federated systems may hold different preferences for digital APPs. As a result, their
local datasets differ from data modalities and samples. There could exist the same data
modalities, such as screen time, typing history, and common sensor data. The users can
also hold unique modalities, such as image, video, audio, and APP data. In such a case,
it is inappropriate to describe this federated system with horizontal federated learning or
federated transfer learning alone.

In the abovementioned case, the relationships among clients could be decomposed
into modality-wise levels. To describe the combined relationships as such, we extend the
taxonomy by introducing hybrid multimodal federated learning. Thus, multimodal federated
learning could be divided into four settings, which can be summarized as two categories
based on the modality congruence, i.e., congruent MFL and incongruent MFL, as shown in
Figure 2. Congruent MFL mainly covers horizontal settings, where all the clients hold the
same modality set. Incongruent MFL, including vertical, transfer, and hybrid MFL, allows
clients to have totally different or partially overlapped modality sets. We introduce the four
categories in the below subsections and summarize them in Table 1.
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Table 1. Taxonomy of multimodal federated learning based on input modalities.

Category Characteristics Example Related Work

Horizontal Same input modalities, same feature space,
different sample ID space. Mobile phone users who use similar apps. [9,11,14,15,17,20,34,35]

Vertical Different input modalities, different feature
space, same sample ID space.

IoT devices from different companies
owned by a single user. [13,16,36]

Transfer Different input modalities, different feature
space, different sample ID space.

Federated collaboration between healthcare
centers with different socioeconomic

conditions and locations.
[17,37,38]

Hybrid
Mixed combinations of different, partially

different, or even the same input modalities,
feature space, and sample ID space.

Mental health prediction task with diverse
mobile users. [12,15,18,39]

5.1. Horizontal Multimodal Federated Learning

Similar to the unimodal horizontal setting, horizontal multimodal federated learning
is defined as a multimodal distributed system where all the clients share the same modality
combinations and the same data feature space but differ in terms of sample IDs.

Definition 1 (Horizontal Multimodal Federated Learning). Given a client setN and modality
setM in a federated system, the system is called horizontal multimodal federated learning if, for
∀a, b ∈ N , the clients hold the same modality set, i.e., |Ma| = |Mb| and Xa = Xb. Here, |Mk|
denotes the total number of modality types for client k, and Xk is the modality combination set.

For instance, in Figure 4 (left), two mobile users, Xa and Xb, with the same APP usage
patterns can hold both image and text data (denoted as ximage and xtext modalities) on their
devices, as shown in Figure 4 (left). With the same data modalities locally, the two clients
have inputs that are the same in terms of the modality combination but different in terms
of the sample IDs, mathematically defined as follows:

Xa = {(ximage
a , xtext

a , ya)i}
|Da |
i=1 , Xb = {(ximage

b , xtext
b , yb)j}

|Db |
j=1 , (6)

where (ximage
a , xtext

a , y)i denotes the i-th data sample of user a with two modalities, image and
text, and the corresponding data label y, and |Da| represents the number of data samples.

Client a Client b

Horizontal Multimodal FL

Client a Client b

Vertical Multimodal FL

Text
data

Text
data

(Mobile Device) (Mobile Device) (Recorder) (Edge Devices)

Figure 4. Illustration of horizontal multimodal federated learning and vertical multimodal federated
learning. (Left): horizontal multimodal federated learning involving two clients. Both hold image
and text data. (Right): the vertical multimodal federated learning example includes two clients with
exclusive modalities. Client a has audio and video data, while client b holds heat rate and acceleration
sensor data.

In order to tackle the horizontal multimodal federated challenge in IoT systems,
Zhao et al. in [34] proposed a generation-based method, which utilized an autoencoder as
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the feature extractor to support the downstream classifier on the server side. The authors
also validated the effectiveness of their method in the missing modality challenge, where
some clients only have certain shared data modalities in the horizontal federation. In [9],
the authors used an ensemble of local and global models to reduce both data variance and
device variance in the federated system.

5.2. Vertical Multimodal Federated Learning

Vertical multimodal federated learning defines a system with multiple unique data
modality combinations held by different clients, where clients differ in terms of the feature
space but share the same sample ID set. These modality combinations are also exclusive
without an overlap in data modalities. These modalities could be aligned well in either
spatial or temporal relationships.

Definition 2 (Vertical Multimodal Federated Learning). Given a client set N and modality
setM in a federated system, the system is defined as vertical multimodal federated learning if, for
∀a, b ∈ N , they hold totally different modality combinations while connected by sample IDs, i.e.,
Xa ∩ Xb = ∅ and Da = Db.

For instance, in the human activity recognition task, a user may own multiple devices
that collect different data modalities due to the divergence of the sensor category, as shown
in Figure 4 (right). In a two-device case, the local datasets of the devices could be defined as:

Xa = {(xvideo
a , xaudio

a , ya)i}
|D|
i=1, Xb = {(xheart_rate

b , xacceleration
b , yb)i}

|D|
i=1, (7)

where client a holds modality video and modality audio, and modality heartratesensor and
accelerationsensor are held by client b. Unlike the horizontal scenario, the two clients could
share the same sample ID set D.

In [16], the authors proposed the feature-disentangled activity recognition network
(FDARN) for the cross-modal federated human activity recognition task. With five ad-
versarial training modules, the proposed method captured both the modality-agnostic
features and modality-specific discriminative characteristics of each client to achieve better
performance than existing personalized federated learning methods. Notably, each client
held a single modality dataset that could differ from group to group in their experiments.

5.3. Multimodal Federated Transfer Learning

Multimodal federated transfer learning supposes that the clients in the federation
have different input modalities and sample ID sets. Different clients are allowed to have
some overlap in their modality combinations while differing in terms of the feature space.
In other words, the clients may conduct different local tasks, such as VQA and image
captioning for vision–language clients.

Definition 3 (Multimodal Federated Transfer Learning). Given a client set N and modality
setM in a federated system, the system is defined as multimodal federated transfer learning if, for
∀a, b ∈ N , the clients hold different modality combinations and sample IDs, Xa ∩ Xb = ∅ and
Da 6= Db.

As shown in Figure 5 (left), considering a federated learning example between different
hospitals, a hospital located in a developed area usually takes equipment in advance
compared to one in a rural area. In addition, due to the locations, the two hospitals may
receive different patient groups. This may result in differences in their data modalities and
the sample ID sets stored in their databases. For a two-party multimodal federated transfer
learning system, the input modalities of the clients can be represented as

Xa = {(xMRI
a , xPET

a , ya)i}
|Da |
i=1 , Xb = {(xMRI

b , xCT
b , yb)j}

|Db |
j=1 , (8)
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where the two clients differ in terms of both local data modalities and sample ID sets.
However, since CT, MRI, and PET scans are all medical image techniques for diagnosis.
The rich knowledge and model advantages could be shared between the clients, forming a
typical multimodal federated transfer learning setting.

Liu et al. proposed aimNet to generate fine-grained image representations and im-
prove the performance for various vision–language grounding problems under federated
settings. They validated their methods in horizontal, vertical, and transfer multimodal
federated learning settings to show their superiority.

Client a Client b

Multimodal Federated Transfer Learning

Client a Client b Client c

(Mobile Devices)(PCs/Keyboard)

Multimedia

Hybrid Multimodal FL

MRI, PET Data MRI, CT Data

(Hospital1) (Hospital2)
(Video Recorder)

Text
data

Video

Figure 5. Illustration of multimodal federated transfer learning and hybrid multimodal federated
learning. (Left): multimodal federated transfer learning involving two hospitals as clients. One holds
MRI and PET data, the other holds MRI and CT data. (Right): hybrid multimodal federated learning
including three clients with different modality combinations. The system contains both unimodal
and multimodal clients.

5.4. Hybrid Multimodal Federated Learning

Hybrid multimodal federated learning is defined as a federated system where all the
clients have incongruent data modalities in their local sets. The modality combination of
each client is unique in the system, varying in terms of modality quantity and category.
Both unimodal and multimodal clients can exist in the system.

Definition 4 (Hybrid Multimodal Federated Learning). Given a client set N and modality set
M in a federated system, the system is defined as hybrid multimodal federated learning if there exist
at least two basic relationships (horizontal, vertical, or transfer) or both unimodal and multimodal
clients. There are at most 2M − 1 types of clients in a hybrid federated system.

In Figure 5 (right), we may take the mental health prediction task at the beginning of
the section as an example of hybrid MFL, where three mobile users share a horizontally
related screen time (ST) and hold a unique data modality. The input modalities of this
example are

Xa = {(xST
a , ximage

a , ya)i}
|Da |
i=1 , Xb = {(xST

b , xvideo
b , yb)j}

|Db |
j=1 , Xc = {(xST

c , xaudio
c , yc)k}

|Dc |
k=1 . (9)

The client category can vary in a hybrid setting. In a bimodal federated system, there
could be three kinds of clients in total; for a trimodal federated system, the number of
client categories could rise to seven depending on the different modality numbers and
combinations. The relationships among the clients in a hybrid MFL system could be
described at the modality level.

Chen and Zhang in [18] proposed FedMSplit, a dynamic and multiview graph struc-
ture aiming to solve the modality incongruity challenges in a hybrid MFL setting. The
novel modality incongruity problem in MFL is a significant challenge within the scope of
hybrid MFL. In [39], the authors proposed a general multimodal model that worked on both
multitask and transfer learning for high-modality (a large set of diverse modalities) and
partially observable (each task only defined on a small subset of modalities) scenarios. This
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indicates a recent research trend of designing more general-purpose multimodal models
and reveals the importance of exploring hybrid MFL, the most challenging and complex
multimodal federated scenario.

6. Tasks for Multimodal Federated Learning

Multimodal federated learning (MFL) offers many advantages, such as privacy preser-
vation and addressing the data silo problem. However, it also faces limitations such
as communication costs, data heterogeneity, and hardware disparities compared to cen-
tralized multimodal learning. Therefore, in addition to the unique challenges of modal
heterogeneity, the original multimodal learning tasks become more challenging when
performed within a federated learning framework. In this section, we will discuss several
representative MFL application tasks.

6.1. Vision–Language Interaction

Visual and language data are widely present in data centers and edge devices, making
vision–language interaction an important task in MFL. Specifically, a federated learning
system targeting visual and language data should be capable of handling diverse and
complex vision–language learning tasks, including visual question answering, visual
reasoning, image captioning, image-text retrieval, and text-to-image generation. In the
context of local training on client devices, the system needs to achieve efficient and robust
multimodal matching and cross-modal interactions. On the one hand, due to constraints
imposed by client hardware and communication requirements, lightweight and high-
performance characteristics are desired in MFL approaches. Integrating state-of-the-art
pre-trained large-scale models from the forefront of federated learning and vision–language
learning has become a promising research direction. On the other hand, the heterogeneity
of data, particularly in terms of labels and modalities, often leads to differences in model
architectures and tasks among clients. These task gaps and semantic gaps can negatively
impact global aggregation on the server side, posing challenges for achieving convergent
global optimization.

Several pioneering studies have explored the field of MFL in the context of vision–
language tasks. In [17], the authors proposed aimNet and evaluated it under horizontal FL,
vertical FL, and federated transfer learning (FTL) settings when the clients were conduct-
ing either the VQA task or the image captioning task. CreamFL [37] utilized contrastive
learning for ensembling uploaded heterogeneous local models based on their output repre-
sentations. CreamFL [37] allowed both unimodal and multimodal vision–language tasks
in federated systems. pFedPrompt [35] adapted the prompt training method to leverage
large foundation models into federated learning systems to connect vision and language
data. FedCMR [11] explored the federated cross-modal retrieval task and mitigated the
representation space gap via weighted aggregation based on the local data amount and
category number.

6.2. Human Activity Recognition

Wireless distributed sensor systems, such as IoT systems, where multiple sensors
provide consistent observations of the same object or event, are a signification application
scenario for MFL. Human activity recognition (HAR) is one of the most representative tasks
in this setting, due to the privacy preservation requirement.

The data partition method for the HAR task in existing MFL works has two types,
client-as-device and client-as-sensor. The former is represented by MMFed [10], which
equally divides the multimodal data for each client. The local co-attention mechanism then
performs multimodal fusion. Zhao et al. conducted their experiment by giving each client
only a single type of modality [34]. The local network was divided into five modules for
either modality-wise aggregation for clients with the same modality or general aggregation
for all clients. However, the modality distribution or data partition method could vary
according to hardware deployment and environmental factors.
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6.3. Emotion Recognition

Emotion recognition plays a crucial role in improving social well-being and enhancing
societal vitality. The multimodal data generated during the use of mobile phones often
provide valuable insights into identifying users who may have underlying mental health
issues. Effective emotion recognition algorithms can target specific users to enhance their
experience and prevent the occurrence of negative events such as suicide and depression.
However, multimedia data associated with user emotions, including chat records and
personal photos, are highly privacy-sensitive. In this context, the MFL framework offers the
capability of efficient collaborative training while ensuring privacy protection. Therefore,
emotion recognition undoubtedly holds a significant position within the realm of MFL.

There are several MFL works that have investigated the emotion recognition task in the
vertical and hybrid MFL setting. In [36], each client in the system held only one modality,
and the unimodal encoders were trained on the local side. The proposed hierarchical
aggregation method aggregated the encoders based on the modality type held by the
clients and utilized an attention-based method to align the decoder weights regardless of
the data modality. The FedMSplit approach [18] utilized a dynamic and multiview graph
structure to flexibly capture the correlations among client models in a multimodal setting.
Liang et al. in [40] proposed a decentralized privacy-preserving representation learning
method that used multimodal behavior markers to predict users’ daily moods and identify
an early risk of suicide.

6.4. Healthcare

Numerous healthcare centers and hospitals have accumulated vast amounts of mul-
timodal data during patient consultations and treatments, including X-ray images, CT
scans, physician diagnoses, and physiological measurements of patients. These multi-
modal data are typically tightly linked to patient identifiers and require stringent privacy
protection measures. As a result, these healthcare institutions have formed isolated data
islands, impeding direct collaboration in terms of co-operative training and data sharing
through open databases. This presents a series of crucial challenges within the realm of
multimodal federated learning, encompassing tasks such as AI-assisted diagnosis, medical
image analysis, and laboratory report generation.

Some works in the field of healthcare have explored multimodal federated learning,
often assuming that all institutions have the same set of modalities, referred to as horizontal
MFL, or that each institution possesses only a single modality, known as vertical MFL.
Agbley et al. in [14] applied federated learning for the prediction of melanoma and obtained
a performance level that was on-par with the centralized training results. FedNorm [15]
performed modality-based normalization techniques to enhance liver segmentation and
was trained with unimodal clients holding CT and MRI data, respectively. Qayyum
et al. utilized cluster federated learning for the automatic diagnosis of COVID-19 [13].
Each cluster contained healthcare entities that held the same modality, such as X-ray and
ultrasound data.

7. Benchmarks for Multimodal Federated Learning

As discussed in Section 6, multimodal federated learning exhibits numerous broad ap-
plication scenarios and tasks. However, the benchmarking of MFL frameworks specifically
designed for testing and executing MFL tasks is still in its exploratory stage. Therefore, in
this section, we present a series of benchmark datasets suitable for multimodal federated
learning to facilitate further research endeavors.

7.1. Vision–Language Datasets

Caltech-UCSD Birds-200-2011 (CUB-200-2011). CUB-200-2011 [41] is one of the most
widely used fine-grained categorization datasets. It contains 11,788 images of 200 subcat-
egories belonging to birds. Each image has its own annotations for identification, which
include one subcategory label, one bounding box, 15 part locations, and 312 binary at-
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tributes. Reed et al. expanded the dataset by providing ten fine-grained text description
sentences for each image [42]. The sentences were collected through the Amazon Mechani-
cal Turk (AMT) platform and had a minimum length of 10 words, without exposing the
label and action information.

Oxford 102 Flower (102 Category Flower Dataset). Oxford 102 Flower [43] is a fine-
grained classification dataset comprising 102 categories of flowers that commonly occur in
the United Kingdom. Each category contains 40 to 258 images. There are 10 text descriptions
for each image.

UPMC Food-101. Food-101 [44] is a noisy multimodal classification dataset that
contains both images and paired captions of 101 food categories. Each category has
750 training and 250 testing images. There are a total of 101,000 images, each paired with
one caption. However, the labels and captions of the training set contain some noise and
may leak the label information. The testing set has been manually cleaned.

Microsoft Common Objects in Context (MS COCO). The MS COCO dataset [45] is
a comprehensive dataset used for various tasks such as object detection, segmentation,
key-point detection, captioning, stuff image segmentation, panoptic segmentation, and
dense pose estimation. It comprises a total of 328 K images. The dataset provides detailed
annotations for object detection (bounding boxes and segmentation masks), captioning,
keypoint detection, stuff image segmentation, panoptic segmentation, and dense pose
estimation. Note that the dense pose annotations are only available for training and
validation images, totaling more than 39,000 images and 56,000 person instances.

Flickr30k. The Flickr30k dataset [46] comprises 31,000 images sourced from Flickr,
accompanied by five reference sentences per image generated by human annotators. Ad-
ditionally, we constructed an image caption corpus consisting of 158,915 crowd-sourced
captions describing 31,783 images. This updated collection of images and captions primarily
focuses on individuals participating in routine activities and events.

7.2. Human Activity Recognition Datasets

NTURGB+D120. The NTU RGB+D 120 dataset [47] is a comprehensive collection
specifically designed for RGB+D human action recognition. It comprises a vast amount of
data sourced from 106 unique subjects, encompassing over 114 thousand video samples
and 8 million frames. This dataset encompasses a wide range of 120 distinct action classes,
encompassing various activities that are part of daily routines, mutual interactions, and
health-related actions. It serves as a valuable resource for research and development in the
field of human action recognition, facilitating advancements in computer vision, machine
learning, and artificial intelligence applications.

Epic-Kitchens-100. EPIC-KITCHENS-100 [48] is a large-scale dataset focusing on first-
person (egocentric) vision. It features multi-faceted audio-visual recordings of individuals’
daily kitchen activities captured in their homes using head-mounted cameras. The dataset,
comprising 45 kitchens across four cities, offers diverse environmental contexts. With 100 h
of full-HD footage and 20 million frames, it provides a rich visual experience for analysis.
The annotations, obtained through a unique ’Pause-and-Talk’ narration interface, enhance
content understanding. The dataset includes 90,000 action segments and 20,000 unique
narrations and supports multiple languages, facilitating cross-cultural studies. It covers
a wide range of activities classified into 97 verb classes and 300 noun classes, enabling
fine-grained analysis within the kitchen context.

Stanford-ECM. Stanford-ECM [49] is an egocentric multimodal dataset containing
approximately 27 h of egocentric video recordings accompanied by heart rate and accel-
eration data. The video lengths vary from 3 min to around 51 min, ensuring a diverse
range of content. The videos were captured using a mobile phone at 720× 1280 resolution
and 30 fps, while the triaxial acceleration was recorded at 30 Hz. A wrist-worn heart rate
sensor captured heart rate readings every 5 s, and the phone and heart rate monitor were
synchronized via Bluetooth. All data were stored in the phone’s storage, with any gaps
in heart rate data filled using piece-wise cubic polynomial interpolation. The data were
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meticulously aligned to the millisecond level at a frequency of 30 Hz, ensuring precise
synchronization across the modalities.

mHealth (Mobile Health). The mHealth (Mobile Health) dataset [50] is a collection of
body motion and vital sign recordings from ten volunteers engaging in various physical
activities. The dataset includes sensors placed on the chest, right wrist, and left ankle to
measure acceleration, rate of turn, and magnetic field orientation across different body
parts. Additionally, the chest sensor provides two-lead ECG measurements, allowing for
potential applications in basic heart monitoring, arrhythmia detection, and the analysis of
exercise effects on the ECG. Overall, the dataset consists of 12 activities performed by 10
subjects, with three sensor devices utilized for data collection.

7.3. Emotion Recognition Datasets

Interactive Emotional Dyadic Motion Capture (IEMOCAP). The IEMOCAP
database [51] is a multimodal and multispeaker dataset designed for studying emotional
expressions. It encompasses around 12 h of audiovisual data, including video record-
ings, speech, facial motion capture, and text transcriptions. The database features dyadic
sessions in which actors engage in improvised or scripted scenarios carefully crafted to
elicit emotional responses. Multiple annotators have labeled the IEMOCAP database with
categorical labels like anger, happiness, sadness, and neutrality, as well as dimensional
labels such as valence, activation, and dominance.

Multimodal Corpus of Sentiment Intensity (CMU-MOSI). The CMU-MOSI
dataset [52,53] consists of 2199 opinion video clips, each annotated with sentiment values
ranging from −3 to 3. The dataset includes detailed annotations for subjectivity, senti-
ment intensity, visual features annotated per frame and per opinion, and audio features
annotated per millisecond.

CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI). The
CMU-MOSEI dataset [52,53] is a multimodal data collection for analyzing sentiment and
emotion in opinionated text and speech. It contains a total of 23,453 video segments
extracted from 1000 YouTube videos, with each segment accompanied by transcriptions
and audio and visual features. The dataset provides rich annotations for sentiment, emotion,
and intensity, allowing researchers to explore the interplay between language, speech, and
visual cues in expressing opinions and emotions.

7.4. Healthcare Datasets

MIMIC-IV. The Medical Information Mart for Intensive Care (MIMIC-IV) dataset [54]
is a comprehensive and widely used database that provides detailed clinical data from
patients admitted to intensive care units (ICUs). MIMIC-IV offers an expanded collection
of de-identified electronic health records (EHRs) from diverse healthcare institutions. It
contains a wealth of information, including vital signs, laboratory results, medications,
procedures, diagnoses, and patient demographics. The dataset is invaluable for conducting
research and developing algorithms and models related to critical care medicine, clinical
decision making, and healthcare analytics.

MIMIC-CXR. The MIMIC Chest X-ray (MIMIC-CXR) database [55] is a large, publicly
available collection of de-identified chest radiographs in DICOM format accompanied by
corresponding free-text radiology reports. It comprises 377,110 images from 227,835 ra-
diographic studies conducted at the Beth Israel Deaconess Medical Center in Boston, MA.
The dataset adheres to the US Health Insurance Portability and Accountability Act of 1996
(HIPAA) Safe Harbor requirements, ensuring the removal of protected health information
(PHI). Its purpose is to facilitate diverse medical research areas, including image analy-
sis, natural language processing, and decision support, providing a valuable resource for
advancing knowledge and innovation in the field of medicine.

Alzheimer’s Disease Neuroimaging Initiative (ADNI). The Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database [56] is a comprehensive and widely used collection
of data aimed at advancing research in Alzheimer’s disease and related neurodegenerative
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disorders. ADNI consists of clinical, genetic, imaging, and biomarker data gathered from
participants across multiple sites in the United States and Canada. The dataset includes var-
ious modalities such as magnetic resonance imaging (MRI), positron emission tomography
(PET), cerebrospinal fluid (CSF) biomarkers, and cognitive assessments.

7.5. Multisensor Datasets

ModelNet40. The ModelNet40 dataset [57] comprises 3D synthetic object point clouds,
making it a highly utilized benchmark in point cloud analysis due to its diverse categories,
precise shapes, and well-organized dataset. In its original form, ModelNet40 encompasses
12,311 CAD-generated meshes representing 40 categories, including objects like airplanes,
cars, plants, and lamps. Out of these, 9843 meshes are designated for training purposes,
while the remaining 2468 meshes are set aside for testing. The corresponding point cloud
data points are uniformly sampled from the surfaces of these meshes and subsequently pre-
processed by repositioning them to the origin and scaling them to fit within a unit sphere.

Vehicle Sensor. The Vehicle Sensor dataset [58] was proposed for the vehicle type
classification task in wireless distributed sensor networks (WDSN). The dataset consists of
23 road segmentation instances. Each instance has 50 acoustic and 50 seismic features.

7.6. Multitask Dataset

FedMultimodal. FedMultimodal [59] was the first federated learning benchmark
designed for multimodal learning, encompassing five key multimodal applications across
ten well-known datasets, featuring a total of eight distinct modalities. This benchmark in-
troduces a comprehensive FL pipeline, enabling a holistic modeling framework that covers
data partitioning, feature extraction, FL benchmark algorithms, and model evaluation. In
contrast to existing FL benchmarks, FedMultimodal offers a standardized methodology for
evaluating FL’s resilience in real-world multimodal scenarios, specifically addressing three
prevalent data corruption types: missing modalities, missing labels, and erroneous labels.

8. Discussion

We introduce the potential directions and challenges of multimodal federated learning
in this section. These challenges are non-exclusive; rather, they are rooted in one core factor,
the data modality distribution in the federated learning system.

8.1. Modality Heterogeneity

The heterogeneity problem in unimodal FL is usually caused by the imbalance of data
quantity and data label skews. While the introduction of modality distribution will further
increase the complexity of the problem, the heterogeneity in both statistical distribution and
modality distribution will affect the global convergence and performance of the federated
system. In addition, most existing non-IID and personalized methods are questionable
in their effectiveness in multimodal federated settings. Thus, innovative and effective
solutions are expected to be proposed for this setting.

In the MFL setting, the modality heterogeneity challenge exists at both the client level
and the system level. At the client level, the clients require efficient local representation
learning to bridge the semantic gaps [60,61] among the multimodal data. One of the most
popular solutions for multimodal representation learning is to map the different modalities
of data onto a mutual latent space. Similar to centralized multimodal learning, how to adapt
advanced knowledge from representation learning and centralized multimodal learning to
design feature extractor modules for merging these gaps in the local learning process is a
vital topic.

At the system level, there exists a task gap among all the clients caused by the differ-
ences in modality combination, e.g., the modality types in the local datasets. In centralized
multimodal learning, representation learning usually transforms the different modalities
into a common representation space via an embedding operation. Comparatively, MFL
divides the common space of the centralized scenario into N common subspaces, making
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the unification of the embedding operation among all the clients difficult. A client maps
the original multimodal data onto embedding representations, which all exist in its unique
common subspace. Due to the modality heterogeneity and the different local model tasks,
these common subspaces differ from each other, resulting in the task gaps that are difficult
to bridge. For example, unimodal clients and multimodal clients could hold totally different
parameter spaces and work on different feature spaces. Even if the clients hold the same
modality combinations, the specific local tasks can be different, such as visual question
answering and image captioning.

To solve this challenge, it is necessary for a new aggregation paradigm. The modality
heterogeneity could result in more divergent gradients and even heterogeneous local model
architectures. As Wang et al. proved that different modalities overfit and generalize at
different rates, the one-fits-all global training strategy for MFL might not work, since
optimizing all the clients jointly can produce suboptimal results [62].

8.2. Missing Modalities

Another significant challenge for MFL is missing modalities, referring to some clients
suffering a data quantity imbalance among the different modalities of their local datasets.
For instance, for a client that holds 1000 image–text data pairs, 300 of the pairs might lose
their image data and 200 of them might not have the text part. The absence of modalities
poses challenges for both the structure and robustness of a model. Many transformer-based
models [63] will encounter significant performance degradation in such cases.

Missing modalities occur frequently in realistic scenarios due to hardware limitations,
collection errors, and storage issues. To address the issue of missing modalities, some
strategies and techniques for centralized learning have been proposed. Some approaches
[64,65] involve data imputation or reconstruction methods to fill in the missing modalities
based on the available information. Others leverage multitask learning or meta-learning
[63] techniques to transfer knowledge from modalities with sufficient data to those with
missing data. Additionally, there have been efforts to design more robust and flexible
models [66] that can effectively handle missing modalities without significant performance
degradation. In regard to these developments in addressing missing modalities in central-
ized learning, it is crucial to explore lightweight and data-efficient methods for MFL to
tackle this challenge.

8.3. Data Complexity

Multimodal federated learning serves as a promising solution for collaborative ML-
based systems among healthcare entities and medical-related institutions. On the one hand,
medical research and patient diagnosis generate massive multimodal data, which is a great
resource to boost the development of advanced ML methods. On the other hand, these
healthcare data, such as electronic health records (EHRs) and X-ray and CT scan images,
are stored and managed in a privacy-sensitive manner. MFL enables the exploration of
information within such complex data, facilitating collaborative training across healthcare
and medical data silos and thereby delivering improved AI-assisted diagnosis, medical
image analysis, report generation, and other related services.

In contrast to applications in the IoT or multimedia domains, healthcare data are more
complex and diverse in terms of both format and granularity. The heterogeneity of the data
is further amplified within healthcare institutions due to differences in medical equipment,
diagnostic methods, and data management practices, making federated collaboration [67]
more difficult. A large amount of medical-related MFL work has emerged. Cobbinah et al.
in [68] provided an FL-based method for the prediction of the phase of Alzheimer’s disease
utilizing MRI data from multiple centers. In [13,14], the authors used MFL for AI-assisted
disease diagnosis and achieved satisfying performance. FedNorm [15] explored medical
image segmentation in the FL setting.
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8.4. Large-Scale Pre-Trained Models

Among the recent progress made in multimodal learning, the inspiring performance
of large-scale pre-trained models [69–71] indicates a promising future for solving broad
machine learning tasks with a unified and effective solution. However, there still exist two
main challenges known to block the universal deployment of these large-scale pre-trained
models in federated learning systems.

On the one hand, the cost of building and training these large-scale pre-trained models
can be extremely high and unaffordable for most computing devices and data centers. On
the other hand, large amounts of training data must be gathered for the effective training
of large foundation models. In a federated learning system, the clients usually have limited
hardware resources and communication bandwidth, which makes it impractical to train
from scratch or even fine-tune large-scale foundation models in FL scenarios. On the other
hand, utilizing traditional knowledge distillation methods to transfer knowledge from pre-
trained large models within the framework of federated learning also faces limitations. This
is due to the fact that the training data for pre-training large models are often abundant and
diverse, making it challenging for clients in a federated learning system to collect and store
such data. These existing limitations hinder the deployment and empowerment of large-
scale foundation models on distributed learning frameworks represented by federated
learning. The ability to integrate large-scale pre-trained models in a lightweight way is
expected for an effective federated multimodal learning framework.

To overcome these limitations, several works have been proposed to tackle the deploy-
ment of large-scale pre-trained models in multimodal federated learning. FedBERT [72]
adapted split learning to achieve efficient distributed training for the large-scale BERT [69]
model. The head and mapping layers of BERT were distributed to clients for local training
and then aggregated on the server side. Ref. [73] proposed the federated prototype-wise
contrastive learning (FedPCL) algorithm, which used class prototypes and contrastive
learning to share class-relevant knowledge among clients, demonstrating improved per-
sonalization and knowledge integration capabilities with a pre-trained backbone model.
FedCLIP [38] added an adapter module after the CLIP backbone to achieve the efficient de-
ployment of the CLIP model [70] with federated clients. Some studies [19,35] have utilized
the idea of prompt training to aggregate the user consensus via a learnable prompt and
improve the users’ characteristics in the visual domain. Improving the ability to integrate
large-scale pre-trained models will greatly enhance the performance of MFL systems.

8.5. Privacy Concerns

Multimodal data increase the possibility of user identification in federated learning
systems due to the complementary information among various modalities. Multimodal
fusion methods, represented by late fusion, increase the risk of inference attacks [74,75].
For example, malicious users could infer other modalities from a certain modality.

Compared to traditional unimodal federated learning, applying traditional defense
methods, such as differential privacy [76] and encrypted transmission [77–79], to multi-
modal systems is more challenging. Different modalities may provide different levels of
information granularity, making it more difficult for differential privacy to strike a satis-
fying trade-off between privacy protection and performance. Meanwhile, in incongruent
MFL, modality heterogeneity may lead to significant differences in local model structures
among different clients, posing a risk of information leakage during aggregation. Therefore,
federated aggregation methods based on model distillation and heterogeneous model
recombination could be promising solutions for privacy leakage risk in MFL. Considering
the aforementioned concerns, it is important to pay more attention to privacy protection
for MFL. Liang et al. in [40] conducted an early exploration of privacy protection tech-
niques for multimodal federated learning. In their mood prediction task using mobile data,
they adopted adversarial training and orthogonal decomposition methods to remove the
sensitive information features when communication occurred.
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8.6. Weakly Supervised Learning

In realistic application scenarios, the multimodal data collected in data silos usually
contain limited supervision signals such as labels or matching relationships among the
modalities. The exploration of weakly supervised learning in MFL is another crucial topic,
which also includes self-supervised learning and semi-supervised learning.

Some unimodal FL studies have investigated the field of self-supervised
learning [80,81] and semi-supervised learning [7,82–84] techniques in FL. These studies
focused on scenarios in which the system contains no or limited data labels. However, the
heterogeneity of multimodal data will further challenge the robustness of systems with
limited and noisy supervision signals. On the one hand, in situations where there are
significant differences in modality combinations among clients, it is difficult to share the
knowledge of unsupervised learning through the aggregation of model parameters. On
the other hand, multimodal data may have a matching issue, where data belonging to
the same image–text pair exist in local datasets with different data IDs. This could lead
to confusion in the alignment relationships between representations, as exemplified by
contrastive learning methods.

These directions hold great potential for advancing the field of multimodal federated
learning by enabling models to learn from diverse and abundant but weakly labeled data
sources, thus paving the way for improved performance and generalization in real-world
applications.

9. Conclusions

In this paper, we delved into the promising research area of multimodal federated
learning (MFL). We provided an introduction to existing MFL methods and discussed
the motivations behind leveraging distributed multimodal data. Recognizing that many
studies in this domain have proposed customized scenario settings, we took the initiative
to formally define multimodal federated learning and categorize and organize existing
works. Our aim was to establish standards for subsequent research and foster a coherent
and structured approach in this evolving field. Addressing the lack of evaluation and
benchmarking, we refined several representative MFL application scenarios and identi-
fied relevant datasets. These efforts will allow the research community to compare and
analyze task performance, ultimately promoting advancements in MFL. Moreover, we
emphasized the core issue of modality heterogeneity, which presents unique challenges
to MFL, including dealing with missing modalities and the deployment of pre-trained
models. Additionally, traditional privacy protection and data heterogeneity have become
more complex in MFL. By highlighting these challenges, we sought to raise awareness
among researchers and encourage innovative solutions. Overall, this survey paper pro-
vides preliminary summaries and explorations that can significantly contribute to a better
understanding of the importance and uniqueness of the MFL field. We hope our insights
will serve as valuable guidance for researchers and inspire further development in this
promising area of research.
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