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Background and Motivation

» Federated learning (FL) enables multiple clients to train
models collaboratively without sharing local data, which
has achieved promising results in different areas, including
the Internet of Things (loT).
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» Motivation

» In the real world scenario, it is impractical to assume that
local data is fully labelled, since users usually do not take
any incentives or have the expertise to annotate the
generated data.

» A general global model may not be sufficient to
characterize the uniqueness of each loT user since loT
devices may store heterogeneous data. Thus, model
customization has become a rigid need for IloT
applications.

» Existing methods are not developed for lIoT applications
and do not take into account the constraints of loT devices
such as limited computational resources and constrained
network bandwidth.

» Contribution

» To the best of our knowledge, we are the first work to
distill lightweight models to warm up and further
customize compressed local models with different
structures using network pruning techniques in FL.

» We propose a new aggregation approach with the
combination of network structure-aware collaborative
distillation and large-model knowledge enhancement
learning.

The Proposed Work: pFedKnow

Knowledge Enhancement Learning

Server
Structure-aware
Update —> Collaborative cee B
Labeled Data _ Disullation - W
y | C
Ds Pretrained Wp W,
Model S S Step 4 k
W,
Global Model Initialization Step O Step 1 Download
- Model W3
S Personalized Model
E Compression N
Unlabeled Data 14 £ ~_
Local .- A ~
' Model W A .
Update |:| S Dk Pseudo Labeled Fine-tune W k
Unlabeled Data Dy, fau AT .

t

Model Ws Uncertainty-based Data D;‘ WB
—> Selecti |
Unlabeled Data D g SO Selected Data ©

Experiments
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Figure 2: Performance comparison on AG.
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