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I‘Background

e Data grows tremendously with more and more data acquisition techniques, e.g., Google processes
8.5 billion searches[1], WhatsApp users exchange up to 65 billion messages daily[2], the number
of IoT devices could rise to 41.6 billion by 2025[3].

e There are regulations and laws being created to protect the data acquisition, data use, and data
share, such as The American Data Privacy Protection Act (ADPPA), General Data Protection
Regulation (GDPR), and California Privacy Rights Act (CPRA).

e However, more and more data privacy concerns are raised, e.g., 72% of US adults think that
companies have too much control over their personal data[ 1], which causes public privacy concern
and social trustworthiness[5].

[1] Data source: Oberlo

[2] Data source: Connectiva Systems

[3] Source: IDC

[4] Source: YouGov

[5] Wang, Jiaqgi. "An In-depth Review of Privacy Concerns Raised by the COVID-19 Pandemic." arXiv preprint arXiv:2101.10868 (2021). 4



How can we utilize the data saved distributedly and
enable different data holders to cooperate with the data privacy guarantee?



I‘Federated Learning

e Federated learning (FL) [1], as one of the solutions, enables multiple clients to train models collaboratively by only
sharing model parameters, instead of sharing local data with others, which protect local data privacy.
e Typical pipelines:

Ws
Step 3: Aggregate received models to Ws @ ={ @ @ @% } Step 4: Distribute Ws back to clients
for the next round update

Step 2: Upload selected clients’ f l
W to the server
W: parameter § @
M: Model . M, .. Step 1: train local models with local data
D: Data D2 Dk

[1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.
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I‘Motivation and Introduction

e Most FL research works, clients hold fully labeled data. However, labels-at-server scenario is more
practical in the real-world setting, where the server holds limited labeled data and clients hold
unlabeled data.

e ForloT:

o  Due to the limited computational capability, large model may not be a good fit for local side
training.
o Communication cost is another concern we need to take care of.
e Generalized semi-supervised federated learning framework for image and text data.



W, W, Wi
Lightweight
heterogeneous models
W: parameter
LM: Lightweight Model
D: Unlabeled Data LM, @F LM, LM, i
D D D Unlabeled data at clients
1 L 2 k
Phone Smart Watch Camera

How can we design a FL framework to enable lightweight heterogeneous local clients to
cooperate effectively under the semi-supervised setting in [oT?



I‘ Challenges

e There is no labeled data at the client side, which makes it impossible to directly apply existing
personalized FL techniques such as pFedMe[ 1], since they all need labeled client data.

e To save computational resources and reduce communication cost, IoT applications usually use models
with less parameters, i.e., lightweight models. Those models are hard to maintain competitive
performance with the large ones. Therefore, the new challenges are how to guarantee the performance of
the new SemiFL model and achieve the personalization of client models simultaneously.

[1] T Dinh, Canh, Nguyen Tran, and Josh Nguyen. "Personalized federated learning with moreau envelopes." Advances in Neural Information Processing Systems 33 (2020):

21394-21405.
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I‘ Related Work

e There are federated learning research works in [oT [1,2], but most of them are conducted with the
supervised setting.

e Semi-supervised federated learning works[3,4,5] are also explored, but none of them takes model
personalization into consideration. Moreover, only a few models consider communication cost in the
model design or the constraints in [oT setting.

[1] Pang, Junjie, et al. "Realizing the heterogeneity: A self-organized federated learning framework for IoT." IEEE Internet of Things Journal 8.5 (2020): 3088-3098.

[2] Li, Zonghang, et al. "Data heterogeneity-robust federated learning via group client selection in industrial 10T." IEEE Internet of Things Journal (2022).

[3] Jeong, Wonyong, et al. "Federated semi-supervised learning with inter-client consistency & disjoint learning." arXiv preprint arXiv:2006.12097 (2020).

[4] Zhang, Zhe, et al. "Semi-supervised federated learning with non-IID data: Algorithm and system design." 2021 IEEE 23rd Int Conf on High Performance Computing &
Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys). IEEE, 2021.

[5] Zhang, Zhengming, et al. "Improving semi-supervised federated learning by reducing the gradient diversity of models." 2021 IEEE International Conference on Big Data
(Big Data). IEEE, 2021.
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Framework Overview

Knowledge Enhancement Learning
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I‘ Work Outline
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I‘ Step 0: System Initialization

Server
Update > -
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I‘Step 2-1:Personalized Model Compression

Server
Update
Labeled Data

Model Wi
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I‘ Step 2-2: Uncertainty-based Data Selection

e We select high-quality pseudo labels to fine-tune the compressed models

e For image data: For image data, we utilize the approach proposed in
the previous work [1] to quantify the uncertainty score
as follows:

K €]

Y (ReLU(ak,) + 1)

e For text data: For text data, we directly use the probability distribu-
tion [pF,,--- ,pf‘m] learned using af over a softmax

layer for each unlabeled data z¥. Then, the uncertainty
score is modeled as follows:

uf =1 —-max{pfl,-" =p£|CI}'

[1] Sensoy, Murat, Lance Kaplan, and Melih Kandemir. "Evidential deep learning to quantify classification uncertainty." Advances in neural information processing

systems 31 (2018). .



I‘ Step 2-3:Personalized Model Update

1
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e Using selected high-quality pseudo labeled data, we e
fine tune the lightweight mode. Cnnroon O{%;@
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Till now, we have finished the initialization and local updates.
We obtain personalized local models with customized parameters and structures.

19



However, we face new challenges here.

20



I‘Raised Challenges at the Server Side

e For personalized learning, we need to maintain the key
characteristics of the current model as well as taking other W
uploaded model parameters into consideration to absorb
common knowledge for further enhancing the learning. ces

e Federated learning needs to train each local model
iteratively. Thus, it is difficult for the training of models to 0$‘ Wk
converge if the model architectures change frequently and &

dramatically.
e As each local model is a sub-structure of the original model, o

which may cause compact model to miss the general W B
knowledge that is learned by the original pretrained model. g



Thus, it requires that each model must keep its original architecture during the
model fusion as well as aggregating appropriate knowledge from other clients
and general knowledge from the large model stored at the server side.

22



I‘ Structure-aware Similarity Learning

e Intuitively, if the data distributions on two

different clients are similar, the lightweight

client models will also have similar

network structures, which further generate » aos B

similar outputs. 1 W,
e Thus, different helpers will contribute W

differently, and it is essential to distinguish i

the importance of helpers. W,

23



I‘ Step 4: Knowledge—Enhanced Collaborative Distillation

Knowledge Enhancement Learning

. Structure-aware 8%%
Collaborative
Dlstlllatlon

Pretramed
Model wg W W; w wy

Step 4 k

For training the designed structure-aware col- ‘
laborative distillation method, we follow general knowl-
edge distillation approaches[1] using the combina-
tion of the classification loss (i.e., cross entropy) and

Server

the Kullback—Leibler (KL) divergence of the weighted  Update

helpers and the pretrained model as follows:

(37) e p—

k k k Model Wi -

E CE (fk (X w ) )+KL( avg, S )+KL(a€, as ), O s D’l @_} v.-.::‘..:‘:::is‘-::m-x O@o Step2 g@z w!
Local i 5

where o is the soft target predictions or logits from Update O scioun D, @_, . “;,“ e QN W

the leader w’C , of represents the logits from the large Model WE @_) bt s T / %% )

pretrained model, and aF  represents the weighted Gt Do ==

avg
average of logits from all helper models defined as 24

k. _ N B-1 gk j
aavg = Z]’:l Bj *a'.z‘

[1] Zhang, Ying, et al. "Deep mutual learning." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
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I‘Performance Evaluation and Communication Efficiency Analysis

) ) ) 4.12 le6
Table : Image classification performance comparing oy e
with semi-supervised federated learning baselines. 5‘...; 356{ -~ ~ ~ - - - 7 7
Dataset SVHN CIFAR-10 ~ 3.001 —
Setting 11D non-11D 11D non-11D = —— Others (except FedMatch)
FedMatch [11] | 78.34%  74.76%  64.70%  6L.12% g 2431
SSFL [41] 76.06%  70.29%  64.45%  60.33% © 1.87
FedMix [40] 78.45%  71.76%  63.68%  61.79% Z L1
FedSEAL [2] 72.64%  69.02%  62.39%  60.07% =70 2'5 5'0 7'5 160 1é5 léO 1%5 200
SemiFL [5] 84.65%  82.15%  70.79%  68.66% & g
# Communication Round
pFedKnow | 85.31% 84.79% T71.05% 69.81%

Figure ' : Communication cost analysis on CIFAR-10.
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I‘Ablation Study

AS-1: Without using local model compression,
pretrained large models, and collaborative distillation,
the server aggregates local models using FedAvg and
then fine-tunes the global model. AS-1 can be treated
as Semi-FedAvg.

AS-2: Without using the designed collaborative
distillation and pretrained large models, we just leverage
a basic average approach via filling the pruned weights
with 0, but keep the local model compression module.

AS-3: Without using the pretrained large models
to conduct knowledge enhancement learning, we only
use compact models to conduct the system update with
keeping all the other modules as pFedKnow.

AS-4: Without using the local model compression,
other operations are the same as our proposed approach.

Table : Ablation study on image datasets.
Dataset SVHN CIFAR-10
Setting 11D non-I11D 11D non-I1D
AS-1 72.50%  67.60%  63.70%  61.56%
AS-2 67.56%  65.04%  59.74%  59.05%
AS-3 79.55%  77.52%  63.67%  63.47%
AS-4 84.62%  80.16%  67.05%  65.71%
pFedKnow | 85.31% 84.79% 71.05% 69.81%

27



I‘ Selected Experimental Results on Text Data
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I‘ Image and Text Convergence

Accuracy(%)
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Figure : Image and text convergence analysis.
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I‘Contribution Summary

e To the best of our knowledge, we are the first work to distill lightweight models to warm up and
further customize compressed local models with different structures using network pruning techniques
in FL, which further solves the challenges of the limited local device computational capacity and
restricted network bands in IoT.

e We propose a new aggregation approach with the combination of network structure-aware
collaborative distillation and large-model knowledge enhancement learning, which can obtain a
personalized model with the help of other models even with different structures and extract general
knowledge from pretrained large models.

e We conduct extensive experiments on both image and text datasets to show the effectiveness and
efficiency of the proposed framework compared with state-of-the-art baselines.
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Any Questions or Comments?
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Thank you

Jiaqi Wang: jgwang@psu.edu
vl Fenglong Ma: fenglong@psu.edu
7% PSU Data Science Lab

https://psudslab.github.io/

33


mailto:jqwang@psu.edu
mailto:fenglong@psu.edu

