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Electronic Health Records (EHR)

* Digital versions of patients' paper charts

* A patient's medical history, diagnoses, medications, treatment
plans, immunization dates, allergies, radiology images, and
laboratory and test results
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National Trends in Hospital and Physician Adoption of Electronic
Health Records (EHR)

Trends in Hospital & Physician EHR Adoption
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an EHR.
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Predictive Modeling

* Using machine learning techniques to analyze patients' historical
data along with current observations to support diagnosis or make
predictions
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EHR Data Unique Characteristics

* Temporal Dynamics
Multimodalities and Heterogeneity

High Dimensionality T T
Imbalanced Data
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Existing Progress

* Basic Deep Learning-based Predictive Models
* Time-aware Predictive Modeling

Predictive Modeling with Multimodal Data
AutoML-based Predictive Modeling
Knowledge-Enhanced Predictive Modeling

Predictive Modeling with Imbalanced Classes

Interpretable Predictive Modeling

@ PennState Recent Advances in Predictive Modeling with Electronic Health Records



Basic Deep Learning-based Predictive Models
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Time-aware Predictive Modeling

e Contrasting with textual data, the sequence of EHR data hinges on time
information, and the intervals between recordings often vary. Accurately
modeling this time aspect is essential for evaluating the impact of each
patient visit.
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Predictive Modeling with Multimodal Data
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Predictive Modeling with Multimodal Data
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Modality- g Mt Moce! ea "V Client Data

level Feature _
Interaction/ g < D Privacy
Fusion Ana,ys|st SIS -F (9 .9

S

T I @ | @\\@

RAIM (KDD’18) Datal Data3 @ @’ IR (ECML-PKDD’21)

&=
= £ ¥ I
l | | i
= . "l"
Hospital 1 Hospital 2 Hospital 3 Datal Hospital 1  Data2 Hospital 2 Data3 Hospital 3

@ PennState Recent Advances in Predictive Modeling with Electronic Health Records



AutolML-based Predictive Modeling
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Knowledge-Enhanced Predictive Modeling

e Structured Knowledge * Unstructured Knowledge

ICD-10
Chapter I a
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Alzheimer's disease is a brain disorder that gets worse over time. It's
characterized by changes in the brain that lead to deposits of certain

Symptom

MedPath (WWW’21)

proteins. Alzheimer's disease causes the brain to shrink and brain cells to

eventually die. Alzheimer's disease is the most common cause of dementia
— a gradual decline in memory, thinking, behavior and social skills. These
changes affect a person's ability to function.
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Predictive Modeling with Imbalanced Classes

* Oversampling and Undersampling Techniques

* Generative Techniques

Real or Fake?
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Interpretable Predictive Modeling

e Attention-based Interpretation ¢ Personalized Knowledge Graph-
based Interpretation

Visit 1: 250.02 (Diabetes mellitus);
Comprehensive Visit 2: 585.9 (Chronic kidney disease) and 780.79 (Fatigue);
Feature EHR Data Visit 3: 244.9 (Hypothyroidism), 272.4 (Hyperlipidemia), and 401.1 (Benign essential hypertension);
Visit 4: 585.9 (Chronic kidney disease);
Visit 5: 585.9 (Chronic kidney disease);
Visit 6: 585.9 (Chronic kidney disease) and 244.9 (Hypothyroidism)

CAUSES CAUSES
Attention Weight: 0.0189 | Hypothyroidism —)El Hypertensive disease —)Ez Left heart failure
Weights st nghest £itention Evid E1 Animal studies suggest that hypertension leads to cardiac tissue hypothyroidism a condition that
Weighted Path VIGERCE can by itself lead to heart failure.
Visits Evidence E2 Left ventricular fzgiul;; ;;1 some SA/OHS patients mc?ulgs ;he result of hypertensive cardiac disease.
Weight: 0.0178 | Hyperlipidemia P Hypertensive disease e Left heart failure
. . A literature search indicates that Anglo-Saxon countries report alarming hyperplastic changes
2nd ngh}elst éﬁtteitlon Evidence E3 particularly in the liver blood clots hyperlipidemia leading to high blood pressure porphyria atypical
Weighted Pat leiomyomas and cervical hyperplasia.
Evidence E4 Left ventricular failure in some SA/OHS patients may be the result of hypertensive cardiac disease.
. . CAUSES . .o CAUSES g
Di . Weight: 0.0150 | Fatigue ———— Cessation of life ———— Left heart failure
iagnosis E5 E6
Codes In light of the magnitude of this sleep debt it is not surprising that fatigue is a factor in 57% of
784.40 781.3 374.01 943.10 482.41 941.08 780.57 846.0 475 V54.21 372.06 784.40 V58.4 781.3  556.5 V61.04 354.3 573.3 i i
Attenti 3rd ngh;st:ttex;tlon Evidence E5 accidents leading to the death of a truck driver and in 10% of fatal car accidents and results in costs
ention 463 0.19 0.0 0.08 035 030 024 0.1 089 011 036 029 015 009 061 021 009 0.06 Weighted Pat of up to 56 billion dollars per year.
‘Weights i n = : - = -
Evidence E6 Though rare death due to myocardial stunning and LV power failure can occur during ICD insertion.
"AUSE. "AUSE.
Weight: 0.0000 | Heart failure CAUSES, Hypertensive disease % Left heart failure
y On.e of the. Lowest These findings suggest that the ATF3 activator tBHQ may have therapeutic potential for the
LSA N ( C I K M 2 O ) Attention Weighted Path Evidence E7 treatment of pressure-overload heart failure induced by chronic hypertension or other pressure
overload mechanisms.
Evidence E8 Left ventricular failure in some SA/OHS patients may be the result of hypertensive cardiac disease.

MedPath (WWW’21)
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Interpretable Predictive Modeling

* Medical Text-based Explicit * Uncertainty-based Interpretation
Interpretation

Visit 1: Esophageal reflux (530.81), Acute conjunctivitis (372.00), Asthma (493.90) .

Visit 2: Conjunctivitis (372.30) I' Traditional Machine Learning Method g ~ Categorical(p)
EHR Visit 3: Other mucopurulent conjunctivitis (372.03)

Visit 4: Lumbago (724.2), Unspecified contraceptive management (V25.9)
Visit 5: Lumbago (724.2), Asthma (493.90), Nausea with vomiting (787.01)

Hand-Crafted
Features

Predicted Sleep

_)
PSG Stage

2

Feature Selection [»| ML classifiers [—>

1. Asthma, a chronic inflammatory airway disease, may be a risk factor for developing COPD. The combination of asthma and smoking
increases the risk of COPD even more. (Weight: 0.034482)

Target Guidance 2. Exposure to tobacco smoke. The most significant risk factor for COPD is long-term cigarette smoking. The more years you smoke and
the more packs you smoke, the greater your risk. Pipe smokers, cigar smokers and marijuana smokers also may be at risk, as well as
people exposed to large amounts of secondhand smoke. (Weight: 0.034479)

- ————— ==

1. Proper treatment makes a big difference in preventing both short-term and long-term complications caused by asthma. (Weight: 0.05109)
2. Exposure to various irritants and substances that trigger allergies (allergens) can trigger signs and symptoms of asthma, including:
Respiratory infections such as the common cold, Physical activity, Air pollutants and irritants such as smoke, Strong emotions and

stress, Gastroesophageal reflux disease (GERD) and etc. (Weight: 0.05107)

3. Signs that your asthma is probably worsening include: Asthma signs and symptoms that are more frequent and bothersome, Increasing
Text Memory (Visit 1-4) | difficulty breathing, The need to use a quick-relief inhaler more often and etc. (Weight: 0.05106)

4. Asthma complications include: Signs and symptoms that interfere with sleep, work and other activities, Sick days from work or school
during asthma flare-ups, A permanent narrowing of the tubes that carry air to and from your lungs (bronchial tubes), which affects how
well you can breathe. (Weight: 0.05105)

5. Conditions that can increase your risk of GERD include: Obesity, Pregnancy, Connective tissue disorders, such as scleroderma and etc ~ 4
(Weight: 0.05104)

4
Regular Deep Learning Method

Predicted Sleep
Stage

PSG » Deep Neural Network
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1. Exposure to various irritants and substances that trigger allergies (allergens) can trigger signs and symptoms of asthma, including:
Respiratory infections such as the common cold, Physical activity, Air pollutants and irritants such as smoke, Strong emotions and I
stress, Gastroesophageal reflux disease (GERD) and etc. (appears twice) (Weight: 0.05015) !
3. Asthma complications include: Signs and symptoms that interfere with sleep, work and other activities, Sick days from work or school :
during asthma flare-ups, A permanent narrowing of the tubes that carry air to and from your lungs (bronchial tubes), which affects how : PSG »] TrustSle epN et
1
1
1
1

‘our Proposed Method p ~ Dirichlet(«)

=
w / . 75

L > Nt REM

) ~ uzg

Predicted Sleep
Stage

Text Memory (Visit 5) | well you can breathe. (Weight: 0.05012)

4. Asthma signs and symptoms include: Shortness of breath, Chest tightness or pain, Wheezing when exhaling, which is a common sign
of asthma in children, Trouble sleeping caused by shortness of breath, coughing or wheezing, Coughing or wheezing attacks that are
worsened by a respiratory virus, such as a cold or the flu. (Weight: 0.05012) i
5. A number of factors are thought to increase your chances of developing asthma. They include: Being a smoker, Exposure to secondhand \ a: concentration parameter
smoke, Exposure to exhaust fumes or other types of pollution and etc. (Weight: 0.05011)

MedRetriever (CIKM'21) TrustSleepNet (BHI'22)

N2 N3 Uncertainty Score

N - ——————
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Benchmarks

@ PennState

Name

Data Type

# of Data

Modalities

Link

MIMIC-III

Real

38,597 patients

Demographics, vital signs, medications,
laboratory measurements, observations and
notes charted by care providers, fluid bal-
ance, procedure codes, diagnostic codes,
imaging reports, hospital length of stay, sur-
vival data

https://physionet.org/content/mimiciii/1.4/

MIMIC-IV

Real

40,000+ patients

Demographics, vital signs, medications,
laboratory measurements, observations and
notes charted by care providers, fluid bal-
ance, procedure codes, diagnostic codes,
imaging reports, hospital length of stay, sur-
vival data

https://physionet.org/content/mimiciv/2.2/

MIMIC-CXR

Real

377,110 images
227,835 reports

Electronic health record data, images (chest
radiographs), and natural language (free-text
reports)

https://physionet.org/content/mimic-cxr/2.0.0/

eICU

Real

200,000+ admissions

Vital sign measurements, care plan docu-
mentation, severity of illness measures, di-
agnosis information, treatment information,
and more

https://physionet.org/content/mimic-cxr/2.0.0/

PPMI

Real

2,230 patients

Subject characteristics, biospecimen, im-
ages, medical history, etc.

https://www.ppmi-info.org/

ADNI

Real

2,775 patients

Subject characteristics, genetic data, images,
medical history, neuropathology, etc.

https://adni.loni.usc.edu/

Apnea-ECG

Real

70 recordings

Subject characteristics, electrocardiogram

https://physionet.org/content/apnea-ecg/1.0.0/

MIT-BIH PSG

Real

18 recordings

Subject characteristics, electrocardiogram,
electroencephalography, electrooculogra-
phy, electromyography, etc.

https://physionet.org/content/slpdb/1.0.0/

SHHS

Real

6,441 patients

Subject characteristics, electrocardiogram,
electroencephalography, electrooculogra-
phy, electromyography, airflow, etc.

https://sleepdata.org/datasets/shhs

Newcastle-Accel

Real

28 patients

Subject characteristics, acceleration,
polysomnography.

https://zenodo.org/records/1160410#.YLqiSC1hlqt

Sleep-Accel

Real

31 patients

Acceleration, heart rate, steps.

https://physionet.org/content/sleep-accel/1.0.0/

EMRBOTS

Synthetic

100,000 patients

Patients’ admissions, demographics, socioe-
conomics, labs, medications, etc.

http://www.emrbots.org/

Project Data Sphere

Real

242 studies

Data provider, sponsor, study phase, linked
data, tumor type, access, etc.

https://www.projectdatasphere.org
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PyHealth: A Comprehensive Deep Learning

Toolkit for Clinical Predictive Modeling

~ Accelerating Reproducible Al for Health Research

Toolkits

Chaoqi Yang", Zhenbang Wu"', Patrick Jiang', Zhen Lin’, Junyi Gao>3, Benjamin Danek’, Jimeng Sun*
! University of Illinois Urbana-Champaign, * University of Edinburgh, * Health Data Research UK

& Domain Easy access to various healthcare

DL Utilize individual modules freely
Experts datasets, tasks, and SOTA models Researchers  for customized DL pipelines
""""""""""""""" Multi-Modal Datasets g Prediction Tasks <oy g Clinical Predictive Models
[ ] Q Q [ ] Patient-Level Tasks
& aBI &B, n Mortality Prediction H RNN GNN
—_— Heart Failure Prediction
= i /\ Diabetes Prediction ? Q? ? ?
{ Visit Sequence . - . Y a
P i | m eal B @ %elﬁsks 5 A0 X J;f% ° |
i Length of Stay Estimation
ehR siosgnal  Medicalimage | ||~ [} 58 e |
Treatment Recommendatiort: State-of-the-Art Models
: Event Sequence Decompensation Prediction i RETAIN  Doctor Al SparcNet
s 1By coedines Phenotype Classification GAMENet GRAM StageNet
i = £ N . . Event-level Tasks SafeDrug Med2Vec AdaCare
X-Ray Classification DiPole Leap Sonee
i P ° ° i Report Generation H . Deepr Agent
. : F [} 4 ° . S EEG Classification : MICRON  ContraWR ...
Clinical Text  Knowledge Graph ~ Genomics =" . % *% i ECG Classification
Support various health data! Support 15+ predictive tasks Support 10+ classical and 20+ SOTA DL models!
——————————————————— Synthetic Data Generation - - Calibration & Uncertainty Quantification -~
- ! covip
f + Probability: 0.99
«Gender: Male *Gender: Male o
'—MOIOZ -DOB: 1976/03/21 ! efore Calibration oo
«Race: Asian *Race: Asian
* Hypertension * Cardiac dysrhythmias
- Kidney disease Generative  * Kidney disease Atypical |:|j> CoviD
Model * Hypertension Covid Probability: 0.73
https -// pyh ea Ith . readth Real Patient Data Synthesized Patient Data After Calibration = Just Right
ed OCS. |O/e n/lateSt/ Support concept look-up, mapping, and i Support realistic synthesized Support calibrating over- or under- confident
embedding for 20+ coding systems! patient data generation! models and controlling the overall risk!
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Open Challenges and Future Directions

e Trustworthy Predictive Modeling

Human-in-the-loop A |

LLM-driven interpretable model design Ethical model design Human-in-the-loop learning
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Open Challenges and Future Directions

 Data Scarcity/Sparsity

Degree to which
necessary data is

Degree to which the data is
available at the time it

is needed available for use
Completeness

Degree to

\?vﬁigcrr?e o which data is

the dat % unique and

. b cannot be

[ﬁg rreesaelir:tS mistaken for

y other entries

Degree to which
the data is within
defined requirements
like formate, type and range

Degree to which
the data is equal within
and between datasets
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Open Challenges and Future Directions

* Pre-training Across Multiple Data Sources

PubMed .

NIH Cancer
Research

Wang et al., Unity in Diversity: Collaborative
Pre-training Across Multimodal Medical
Sources, ACL24

MIMIC .
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Open Challenges and Future Directions

* Federated Training for Foundation Models

_+-

m Wang et al., FedMeKI: A Benchmark for Scaling Medical

A~ Foundation Models via Federated Knowledge Injection, under review

TP

Wang et al., FedKIM: Adaptive Federated Knowledge Injection into

dy () ) ; : .

=] e [=] pply Medical Foundation Models, under review
o]l — 10 —| 000 |z
SISy I
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Paper Lab Personal

B SRR Thank You.

Any questions, please feel free contact Jiaqi Wang or Fenglong Ma
via jgwang@psu.edu or fenglong@psu.edu.

E.,..
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